Open Access
Issue
A&A
Volume 699, July 2025
Article Number A179
Number of page(s) 16
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/202555215
Published online 08 July 2025
  1. Abadi, M., Agarwal, A., Barham, P., et al. 2015, TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, software available from tensorflow.org [Google Scholar]
  2. Andreux, M., Angles, T., Exarchakis, G., et al. 2020, J. Mach. Learn. Res., 21, 1 [Google Scholar]
  3. Arnaud, K. A. 1996, ASP Conf. Ser., 101, 17 [Google Scholar]
  4. Ayesha, S., Hanif, M. K., & Talib, R. 2020, Information Fusion, 59, 44 [Google Scholar]
  5. Barret, D., & Cappi, M. 2019, A&A, 628, A5 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  6. Barret, D., & Dupourqué, S. 2024, A&A, 686, A133 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  7. Barret, D., Albouys, V., Herder, J.-W. d., et al. 2023, Exp. Astron., 55, 373 [NASA ADS] [CrossRef] [Google Scholar]
  8. Betancourt, M. J., & Girolami, M. 2013, Hamiltonian Monte Carlo for Hierarchical Models (Chapman and Hall: CRC Press) [Google Scholar]
  9. Bonson, K., & Gallo, L. C. 2016, MNRAS, 458, 1927 [NASA ADS] [CrossRef] [Google Scholar]
  10. Buchner, J., & Boorman, P. 2024, Statistical Aspects of X-ray Spectral Analysis, eds. C. Bambi, & A. Santangelo (Singapore: Springer Nature Singapore), 5403 [Google Scholar]
  11. Buchner, J., Georgakakis, A., Nandra, K., et al. 2014, A&A, 564, A125 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  12. Cash, W. 1979, ApJ, 228, 939 [Google Scholar]
  13. Choudhury, K., Garcia, J. A., Steiner, J. F., & Bambi, C. 2017, ApJ, 851, 57 [NASA ADS] [CrossRef] [Google Scholar]
  14. Constantine, P. G., Dow, E., & Wang, Q. 2014, SIAM J. Sci. Comput., 36, A1500 [Google Scholar]
  15. Cruise, M., Guainazzi, M., Aird, J., et al. 2025, Nat. Astron., 9, 36 [Google Scholar]
  16. de Plaa, J., Kaastra, J. S., Gu, L., Mao, J., & Raassen, T. 2019, SPEX: HighResolution Spectral Modeling and Fitting for X-ray Astronomy (Boston: ASP) [Google Scholar]
  17. Deistler, M., Macke, J. H., & Gonçalves, P. J. 2022, Proc. Natl. Acad. Sci., 119, e2207632119 [NASA ADS] [CrossRef] [Google Scholar]
  18. Dupourqué, S., Barret, D., Diez, C. M., Guillot, S., & Quintin, E. 2024, A&A, 690, A317 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  19. García, J. A., Dauser, T., Ludlam, R., et al. 2022, ApJ, 926, 13 [CrossRef] [Google Scholar]
  20. Gneiting, T., & Raftery, A. E. 2007, J. Am. Stat. Assoc., 102, 359 [CrossRef] [Google Scholar]
  21. Greenberg, D. S., Nonnenmacher, M., & Macke, J. H. 2019, arXiv e-prints [arXiv:1905.07488] [Google Scholar]
  22. Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Nature, 585, 357 [NASA ADS] [CrossRef] [Google Scholar]
  23. Hastings, W. K. 1970, Biometrika, 57, 97 [Google Scholar]
  24. He, K., Zhang, X., Ren, S., & Sun, J. 2015, Deep Residual Learning for Image Recognition (California: IEEE) [Google Scholar]
  25. Hinton, S. R. 2016, J. Open Source Softw., 1, 00045 [NASA ADS] [CrossRef] [Google Scholar]
  26. Houck, J. C., & Denicola, L. A. 2000, ASP Conf. Ser., 216, 591 [Google Scholar]
  27. Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90 [NASA ADS] [CrossRef] [Google Scholar]
  28. Ichinohe, Y., Yamada, S., Miyazaki, N., & Saito, S. 2018, MNRAS, 475, 4739 [NASA ADS] [CrossRef] [Google Scholar]
  29. Jimenez Rezende, D., & Mohamed, S. 2016, arXiv e-prints [arXiv:1505.05770] [Google Scholar]
  30. Kaastra, & Bleeker. 2016, Antike und Abendland, 587, A151 [Google Scholar]
  31. Kingma, D. P., & Ba, J. 2017, arXiv e-prints [arXiv:1412.6980] [Google Scholar]
  32. McKinney, W. 2010, in Proceedings of the 9th Python in Science Conference, eds. S. van der Walt, & J. Millman, 51 [Google Scholar]
  33. Nandra, K., Barret, D., Barcons, X., et al. 2013, arXiv e-prints [arXiv:1306.2307] [Google Scholar]
  34. Papamakarios, G., Pavlakou, T., & Murray, I. 2017, in Advances in Neural Information Processing Systems (UK: Curran Associates, Inc.), 30 [Google Scholar]
  35. Parker, M. L., Lieu, M., & Matzeu, G. A. 2022, MNRAS, 514, 4061 [NASA ADS] [CrossRef] [Google Scholar]
  36. Paszke, A., Gross, S., Chintala, S., et al. 2017, in NIPS Autodiff Workshop [Google Scholar]
  37. Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, J. Mach. Learn. Res., 12, 2825 [Google Scholar]
  38. Peille, P., Barret, D., Cucchetti, E., et al. 2025, Exp. Astron., 59, 18 [Google Scholar]
  39. Quintin, E., Webb, N. A., Gérpide, A., Bachetti, M., & Fürst, F. 2021, MNRAS, 503, 5485 [NASA ADS] [CrossRef] [Google Scholar]
  40. Siemiginowska, A., Burke, D., Günther, H. M., et al. 2024, ApJS, 274, 43 [Google Scholar]
  41. Skilling, J. 2006, Bayesian Analysis, 1, 833 [CrossRef] [Google Scholar]
  42. Smith, R. K., Brickhouse, N. S., Liedahl, D. A., & Raymond, J. C. 2001, ApJ, 556, L91 [Google Scholar]
  43. Tejero-Cantero, A., Boelts, J., Deistler, M., et al. 2020, J Open Source Softw., 5, 2505 [Google Scholar]
  44. Titarchuk, L. 1994, ApJ, 434, 570 [NASA ADS] [CrossRef] [Google Scholar]
  45. Tutone, A., Anitra, A., Ambrosi, E., et al. 2025, A&A, 696, A77 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  46. Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nat. Methods, 17, 261 [Google Scholar]
  47. XRISM Science Team 2020, Science with the X-ray Imaging and Spectroscopy Mission (XRISM) (USA: NASA) [Google Scholar]
  48. Zanetta, F., & Allen, S. 2024, Scoringrules: a python library for probabilistic forecast evaluation, https://github.com/frazane/scoringrules [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.