Open Access
Issue
A&A
Volume 692, December 2024
Article Number A41
Number of page(s) 24
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/202450828
Published online 03 December 2024
  1. Alina, D., Ristorcelli, I., Montier, L., et al. 2019, MNRAS, 485, 2825 [Google Scholar]
  2. Alina, D., Shomanov, A., & Baimukhametova, S. 2022, IEEE Access, 10, 74472 [NASA ADS] [CrossRef] [Google Scholar]
  3. André, P., Men’shchikov, A., Bontemps, S., et al. 2010, A&A, 518, L102 [CrossRef] [EDP Sciences] [Google Scholar]
  4. André, P., Di Francesco, J., Ward-Thompson, D., et al. 2014, in Protostars and Planets VI, eds. H. Beuther, R. S. Klessen, C. P. Dullemond, & T. Henning, 27 [Google Scholar]
  5. Arpit, D., Jastrzębski, S., Ballas, N., et al. 2017, in International conference on machine learning, PMLR, 233 [Google Scholar]
  6. Arzoumanian, D., André, P., Didelon, P., et al. 2011, A&A, 529, L6 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  7. Arzoumanian, D., André, P., Könyves, V., et al. 2019, A&A, 621, A42 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  8. Arzoumanian, D., Russeil, D., Zavagno, A., et al. 2022, A&A, 660, A56 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  9. Asgari Taghanaki, S., Abhishek, K., Cohen, J. P., Cohen-Adad, J., & Hamarneh, G. 2021, Artif. Intell. Rev., 54, 137 [Google Scholar]
  10. Astropy Collaboration (Price-Whelan, A. M., et al.) 2022, ApJ, 935, 167 [NASA ADS] [CrossRef] [Google Scholar]
  11. Bekki, K. 2021, A&A, 647, A120 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  12. Benedettini, M., Schisano, E., Pezzuto, S., et al. 2015, MNRAS, 453, 2036 [NASA ADS] [CrossRef] [Google Scholar]
  13. Bešlić, I., Coudé, S., Lis, D. C., et al. 2024, A&A, 684, A212 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  14. Bianco, M., Giri, S. K., Iliev, I. T., & Mellema, G. 2021, MNRAS, 505, 3982 [NASA ADS] [CrossRef] [Google Scholar]
  15. Bonnarel, F., Fernique, P., Bienaymé, O., et al. 2000, A&AS, 143, 33 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  16. Bui, T. D., Wang, L., Chen, J., et al. 2019, in Domain Adaptation and Representation Transfer and Medical Image Learning with Less Labels and Imperfect Data: First MICCAI Workshop, DART 2019, and First International Workshop, MIL3ID 2019, Shenzhen, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13 and 17, 2019, Proceedings 1, Springer, 243–251 [Google Scholar]
  17. Cao, H., Wang, Y., Chen, J., et al. 2023, in Computer Vision – ECCV 2022 Workshops, eds. L. Karlinsky, T. Michaeli, & K. Nishino (Cham: Springer Nature Switzerland), 205 [Google Scholar]
  18. Carrière, J.-S., Ferrière, K., Ristorcelli, I., & Montier, L. 2022a, A&A, 668, A42 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  19. Carrière, J.-S., Montier, L., Ferrière, K., & Ristorcelli, I. 2022b, A&A, 668, A41 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  20. Chen, Y.-C., Genovese, C. R., & Wasserman, L. 2014, arXiv e-prints [arXiv:1406.1803] [Google Scholar]
  21. Chen, Y.-C., Ho, S., Tenneti, A., et al. 2015, MNRAS, 454, 3341 [NASA ADS] [CrossRef] [Google Scholar]
  22. Chen, M. C.-Y., Di Francesco, J., Rosolowsky, E., et al. 2020, ApJ, 891, 84 [NASA ADS] [CrossRef] [Google Scholar]
  23. Clark, S., & Hensley, B. S. 2019, ApJ, 887, 136 [NASA ADS] [CrossRef] [Google Scholar]
  24. Clark, S., Peek, J., & Putman, M. 2014, ApJ, 789, 82 [NASA ADS] [CrossRef] [Google Scholar]
  25. Clark, S. E., Hill, J. C., Peek, J. E., Putman, M. E., & Babler, B. L. 2015, Phys. Rev. Lett., 115, 241302 [NASA ADS] [CrossRef] [Google Scholar]
  26. Clarke, S. D., Williams, G. M., & Walch, S. 2020, MNRAS, 497, 4390 [NASA ADS] [CrossRef] [Google Scholar]
  27. Cox, N., Arzoumanian, D., André, P., et al. 2016, A&A, 590, A110 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  28. Dewangan, L. K., Bhadari, N. K., Maity, A. K., et al. 2024, MNRAS, 527, 5895 [Google Scholar]
  29. Dib, S., Bontemps, S., Schneider, N., et al. 2020, A&A, 642, A177 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  30. Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al. 2020, arXiv e-prints [arXiv:2010.11929] [Google Scholar]
  31. Elia, D., Molinari, S., Fukui, Y., et al. 2013, ApJ, 772, 45 [NASA ADS] [CrossRef] [Google Scholar]
  32. Feng, J., Smith, R. J., Hacar, A., Clark, S. E., & Seifried, D. 2024, MNRAS, 528, 6370 [NASA ADS] [CrossRef] [Google Scholar]
  33. Fiorellino, E., Elia, D., André, P., et al. 2021, MNRAS, 500, 4257 [Google Scholar]
  34. Frangi, A. F., Niessen, W. J., Vincken, K. L., & Viergever, M. A. 1998, in Medical Image Computing and Computer-Assisted Intervention – MICCAI’98: First International Conference Cambridge, MA, USA, October 11–13, 1998 Proceedings 1 (Springer), 130 [Google Scholar]
  35. Fu, K.-S., & Mui, J. 1981, Pattern Recogn., 13, 3 [NASA ADS] [CrossRef] [Google Scholar]
  36. Goodfellow, I., Bengio, Y., & Courville, A. 2016, Deep Learning (MIT Press) [Google Scholar]
  37. Green, C.-E., Cunningham, M. R., Dawson, J. R., et al. 2017, ApJ, 840, L17 [NASA ADS] [CrossRef] [Google Scholar]
  38. Hacar, A., Tafalla, M., Forbrich, J., et al. 2018, A&A, 610, A77 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  39. Hacar, A., Clark, S., Heitsch, F., et al. 2023, in Astronomical Society of the Pacific Conference Series, 534, 153 [NASA ADS] [Google Scholar]
  40. Hacar, A., Clark, S. E., Heitsch, F., et al. 2023, in Protostars and Planets VII, eds. S. Inutsuka, Y. Aikawa, T. Muto, K. Tomida, & M. Tamura, Astronomical Society of the Pacific Conference Series, 534, 153 [NASA ADS] [Google Scholar]
  41. Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Nature, 585, 357 [NASA ADS] [CrossRef] [Google Scholar]
  42. Hausen, R., & Robertson, B. E. 2020, ApJS, 248, 20 [CrossRef] [Google Scholar]
  43. He, H., & Ma, Y. 2013, Imbalanced learning: foundations, algorithms, and applications (John Wiley & Sons) [CrossRef] [Google Scholar]
  44. He, K., Zhang, X., Ren, S., & Sun, J. 2016, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770 [Google Scholar]
  45. Hoemann, E., Heigl, S., & Burkert, A. 2021, MNRAS, 507, 3486 [NASA ADS] [CrossRef] [Google Scholar]
  46. Hsieh, C.-H., Arce, H. G., Mardones, D., Kong, S., & Plunkett, A. 2021, ApJ, 908, 92 [CrossRef] [Google Scholar]
  47. Huang, H., Lin, L., Tong, R., et al. 2020, in ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 1055 [Google Scholar]
  48. Huang, S.-Y., Hsu, W.-L., Hsu, R.-J., & Liu, D.-W. 2022, Diagnostics, 12 [Google Scholar]
  49. Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90 [NASA ADS] [CrossRef] [Google Scholar]
  50. Izumi, N., Sanhueza, P., Koch, P. M., et al. 2024, ApJ, 963, 163 [NASA ADS] [CrossRef] [Google Scholar]
  51. Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., & Bengio, Y. 2017, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 11 [Google Scholar]
  52. Jetley, S., Lord, N. A., Lee, N., & Torr, P. H. 2018, arXiv e-prints [arXiv:1804.02391] [Google Scholar]
  53. Juvela, M. 2016, A&A, 593, A58 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  54. Kingma, D. P., & Ba, J. 2014, arXiv e-prints [arXiv:1412.6980] [Google Scholar]
  55. Koch, E. W., & Rosolowsky, E. W. 2015, MNRAS, 452, 3435 [Google Scholar]
  56. Könyves, V., André, P., Arzoumanian, D., et al. 2020, A&A, 635, A34 [Google Scholar]
  57. Krause, J., Sapp, B., Howard, A., et al. 2016, in Computer Vision – ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part III 14 (Springer), 301 [Google Scholar]
  58. Krizhevsky, A., Sutskever, I., & Hinton, G. E. 2017, Commun. ACM, 60, 84 [CrossRef] [Google Scholar]
  59. Kumar, M. S. N., Palmeirim, P., Arzoumanian, D., & Inutsuka, S. I. 2020, A&A, 642, A87 [EDP Sciences] [Google Scholar]
  60. Kumar, M. S. N., Arzoumanian, D., Men’shchikov, A., et al. 2022, A&A, 658, A114 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  61. LeCun, Y., Boser, B., Denker, J., et al. 1989, Adv. Neural Inform. Process. Syst., 2 [Google Scholar]
  62. Li, Z. 2023, Highlights Sci. Eng. Technol., 39, 1245 [CrossRef] [Google Scholar]
  63. Li Causi, G., Schisano, E., Liu, S. J., Molinari, S., & Di Giorgio, A. 2016, SPIE Conf. Ser., 9904, 99045V [NASA ADS] [Google Scholar]
  64. Linardatos, P., Papastefanopoulos, V., & Kotsiantis, S. 2020, Entropy, 23, 18 [NASA ADS] [CrossRef] [Google Scholar]
  65. Liu, B., & Liu, J. 2019, J. Phys. Conf. Ser., 1176, 022010 [NASA ADS] [CrossRef] [Google Scholar]
  66. Liu, Z., Lin, Y., Cao, Y., et al. 2021, in Proceedings of the IEEE/CVF International Conference on Computer Vision, 10012 [Google Scholar]
  67. Maity, A. K., Dewangan, L. K., Bhadari, N. K., et al. 2023, MNRAS, 523, 5388 [NASA ADS] [CrossRef] [Google Scholar]
  68. Malinen, J., Montier, L., Montillaud, J., et al. 2016, MNRAS, 460, 1934 [Google Scholar]
  69. Mattern, M., Kauffmann, J., Csengeri, T., et al. 2018, A&A, 619, A166 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  70. Men’shchikov, A. 2013, A&A, 560, A63 [Google Scholar]
  71. Men’shchikov, A. 2021, A&A, 649, A89 [EDP Sciences] [Google Scholar]
  72. Molinari, S., Swinyard, B., Bally, J., et al. 2010, A&A, 518, L100 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  73. Molinari, S., Schisano, E., Elia, D., et al. 2016, A&A, 591, A149 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  74. Motte, F., Bontemps, S., Csengeri, T., et al. 2022, A&A, 662, A8 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  75. Oktay, O., Schlemper, J., Folgoc, L. L., et al. 2018, arXiv e-prints [arXiv:1804.03999] [Google Scholar]
  76. Ossenkopf-Okada, V., & Stepanov, R. 2019, A&A, 621, A5 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  77. Palmeirim, P. a., André, P., Kirk, J., et al. 2013, A&A, 550, A38 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  78. Panopoulou, G. V., Tassis, K., Goldsmith, P., & Heyer, M. 2014, MNRAS, 444, 2507 [NASA ADS] [CrossRef] [Google Scholar]
  79. Panopoulou, G., Psaradaki, I., & Tassis, K. 2016, MNRAS, 462, 1517 [Google Scholar]
  80. Panopoulou, G., Psaradaki, I., Skalidis, R., Tassis, K., & Andrews, J. 2017, MNRAS, 466, 2529 [NASA ADS] [CrossRef] [Google Scholar]
  81. Park, G., Currie, M. J., Thomas, H. S., et al. 2023, ApJS, 264, 16 [NASA ADS] [CrossRef] [Google Scholar]
  82. Peretto, N., & Fuller, G. A. 2009, A&A, 505, 405 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  83. Peretto, N., André, P., Könyves, V., et al. 2012, A&A, 541, A63 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  84. Pezzuto, S., Benedettini, M., Di Francesco, J., et al. 2021, A&A, 645, A55 [EDP Sciences] [Google Scholar]
  85. Pilbratt, G. L., Riedinger, J. R., Passvogel, T., et al. 2010, A&A, 518, L1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  86. Pillai, T., Wyrowski, F., Menten, K. M., & Krügel, E. 2006, A&A, 447, 929 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  87. Pillsworth, R., & Pudritz, R. E. 2024, MNRAS, 528, 209 [NASA ADS] [CrossRef] [Google Scholar]
  88. Pineda, J. E., Arzoumanian, D., André, P., et al. 2022, arXiv e-prints [arXiv:2205.03935] [Google Scholar]
  89. Planck Collaboration Int. XXXII. 2016, A&A, 586, A135 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  90. Polychroni, D., Schisano, E., Elia, D., et al. 2013, ApJ, 777, L33 [CrossRef] [Google Scholar]
  91. Pouteau, Y., Motte, F., Nony, T., et al. 2022, A&A, 664, A26 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  92. Priestley, F., & Whitworth, A. 2022, MNRAS, 512, 1407 [NASA ADS] [CrossRef] [Google Scholar]
  93. Reyes-Reyes, S. D., Stutz, A. M., Megeath, S. T., et al. 2024, MNRAS, 529, 2220 [NASA ADS] [CrossRef] [Google Scholar]
  94. Rigby, A. J., Peretto, N., Anderson, M., et al. 2024, MNRAS, 528, 1172 [NASA ADS] [CrossRef] [Google Scholar]
  95. Rivera-Ingraham, A., Ristorcelli, I., Juvela, M., et al. 2016, A&A, 591, A90 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  96. Rivera-Ingraham, A., Ristorcelli, I., Juvela, M., et al. 2017, A&A, 601, A94 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  97. Robitaille, T. 2019, APLpy v2.0: The Astronomical Plotting Library in Python [Google Scholar]
  98. Robitaille, T., & Bressert, E. 2012, APLpy: Astronomical Plotting Library in Python, Astrophysics Source Code Library [record ascl:1208.017] [Google Scholar]
  99. Robitaille, J.-F., Motte, F., Schneider, N., Elia, D., & Bontemps, S. 2019, A&A, 628, A33 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  100. Ronneberger, O., Fischer, P., & Brox, T. 2015, in International Conference on Medical Image Computing and Computer-assisted Intervention (Springer), 234 [Google Scholar]
  101. Salji, C., Richer, J., Buckle, J., et al. 2015a, MNRAS, 449, 1782 [NASA ADS] [CrossRef] [Google Scholar]
  102. Salji, C., Richer, J. S., Buckle, J. V., et al. 2015b, MNRAS, 449, 1769 [NASA ADS] [CrossRef] [Google Scholar]
  103. Schisano, E., Rygl, K. L. J., Molinari, S., et al. 2014, ApJ, 791, 27 [Google Scholar]
  104. Schisano, E., Molinari, S., Elia, D., et al. 2020, MNRAS, 492, 5420 [Google Scholar]
  105. Shimajiri, Y., André, P., Ntormousi, E., et al. 2019, A&A, 632, A83 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  106. Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163 [NASA ADS] [CrossRef] [Google Scholar]
  107. Soler, J. D., Hennebelle, P., Martin, P., et al. 2013, ApJ, 774, 128 [NASA ADS] [CrossRef] [Google Scholar]
  108. Soler, J. D., Miville-Deschênes, M. A., Molinari, S., et al. 2022, A&A, 662, A96 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  109. Song, H., Kim, M., Park, D., Shin, Y., & Lee, J.-G. 2022, IEEE Transactions on Neural Networks and Learning Systems [Google Scholar]
  110. Sousbie, T. 2011, MNRAS, 414, 350 [NASA ADS] [CrossRef] [Google Scholar]
  111. Thoma, M. 2016, CoRR, arXiv e-prints [1602.06541] [Google Scholar]
  112. Torpmann-Hagen, B., Thambawita, V., Glette, K., Halvorsen, P., & Riegler, M. A. 2022, Segmentation Consistency Training: Out-of-Distribution Generalization for Medical Image Segmentation [Google Scholar]
  113. van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., et al. 2014, PeerJ, 2, e453 [Google Scholar]
  114. Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nature Methods, 17, 261 [CrossRef] [Google Scholar]
  115. Vojtekova, A., Lieu, M., Valtchanov, I., et al. 2021, MNRAS, 503, 3204 [Google Scholar]
  116. Wang, K., Zhang, Q., Testi, L., et al. 2014, MNRAS, 439, 3275 [Google Scholar]
  117. Wang, Z., Bovik, A., Sheikh, H., & Simoncelli, E. 2004, IEEE Trans. Image Process., 13, 600 [CrossRef] [Google Scholar]
  118. Whitney, B., Benjamin, R., Meade, M., et al. 2011, in American Astronomical Society Meeting Abstracts, 217, 241.16 [NASA ADS] [Google Scholar]
  119. Xu, D., Kong, S., Kaul, A., Arce, H. G., & Ossenkopf-Okada, V. 2023a, ApJ, 955, 113 [NASA ADS] [CrossRef] [Google Scholar]
  120. Xu, F.-W., Wang, K., Liu, T., et al. 2023b, MNRAS, 520, 3259 [NASA ADS] [CrossRef] [Google Scholar]
  121. Yuen, K. K., & Dixon, W. J. 1973, Biometrika, 60, 369 [CrossRef] [Google Scholar]
  122. Zavagno, A., André, P., Schuller, F., et al. 2020, A&A, 638, A7 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  123. Zavagno, A., Dupé, F. X., Bensaid, S., et al. 2023, A&A, 669, A120 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  124. Zhang, Z., Liu, Q., & Wang, Y. 2018, IEEE Geosci. Remote Sens. Lett., 15, 749 [CrossRef] [Google Scholar]
  125. Zhang, C., Bengio, S., Hardt, M., Recht, B., & Vinyals, O. 2021, Commun. ACM, 64, 107 [CrossRef] [Google Scholar]
  126. Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., & Liang, J. 2019, IEEE Trans. Med. Imaging, 39, 1856 [Google Scholar]
  127. Zhu, X.-P., Dai, J.-M., Bian, C.-J., et al. 2019, Astrophys. Space Sci., 364, 55 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.