Issue |
A&A
Volume 632, December 2019
|
|
---|---|---|
Article Number | A83 | |
Number of page(s) | 20 | |
Section | Interstellar and circumstellar matter | |
DOI | https://doi.org/10.1051/0004-6361/201935689 | |
Published online | 05 December 2019 |
Probing fragmentation and velocity sub-structure in the massive NGC 6334 filament with ALMA★
1
Laboratoire d’Astrophysique (AIM), CEA/DRF, CNRS, Université Paris-Saclay, Université Paris Diderot,
Sorbonne Paris Cité,
91191
Gif-sur-Yvette,
France
e-mail: Yoshito.Shimajiri@cea.fr
2
Department of Physics and Astronomy, Graduate School of Science and Engineering, Kagoshima University,
1-21-35 Korimoto,
Kagoshima,
Kagoshima
890-0065,
Japan
3
National Astronomical Observatory of Japan,
Osawa 2-21-1,
Mitaka,
Tokyo
181-8588,
Japan
4
Foundation for Research and Technology (FORTH),
Nikolaou Plastira 100, Vassilika Vouton,
GR – 711 10
Heraklion,
Greece
5
Department of Physics and ITCP, University of Crete,
71003
Heraklion,
Greece
6
Department of Physics, Graduate School of Science, Nagoya University,
Nagoya
464-8602,
Japan
7
Instituto de Astrofisica e Ciencias do Espaco, Universidade do Porto, CAUP, Rua das Estrelas,
PT4150-762
Porto,
Portugal
Received:
12
April
2019
Accepted:
3
October
2019
Context. Herschel imaging surveys of galactic interstellar clouds support a paradigm for low-mass star formation in which dense molecular filaments play a crucial role. The detailed fragmentation properties of star-forming filaments remain poorly understood, however, and the validity of the filament paradigm in the intermediate- to high-mass regime is still unclear.
Aims. Here, following up on an earlier 350 μm dust continuum study with the ArTéMiS camera on the APEX telescope, we investigate the detailed density and velocity structure of the main filament in the high-mass star-forming region NGC 6334.
Methods. We conducted ALMA Band 3 observations in the 3.1 mm continuum and of the N2H+(1–0), HC5N(36–35), HNC(1–0), HC3N(10–9), CH3CCH(6–5), and H2CS(3–2) lines at an angular resolution of ~3′′, corresponding to 0.025 pc at a distance of 1.7 kpc.
Results. The NGC 6334 filament was detected in both the 3.1 mm continuum and the N2H+, HC3N, HC5N, CH3CCH, and H2CS lines with ALMA. We identified twenty-six compact (<0.03 pc) dense cores at 3.1 mm and five velocity-coherent fiber-like features in N2H+ within the main filament. The typical length (~0.5 pc) of, and velocity difference (~0.8 km s−1) between, the fiber-like features of the NGC 6334 filament are reminiscent of the properties for the fibers of the low-mass star-forming filament B211/B213 in the Taurus cloud. Only two or three of the five velocity-coherent features are well aligned with the NGC 6334 filament and may represent genuine, fiber sub-structures; the other two features may trace accretion flows onto the main filament. The mass distribution of the ALMA 3.1 mm continuum cores has a peak at ~10 M⊙, which is an order of magnitude higher than the peak of the prestellar core mass function in nearby, low-mass star-forming clouds. The cores can be divided into seven groups, closely associated with dense clumps seen in the ArTéMiS 350 μm data. The projected separation between ALMA dense cores (0.03–0.1 pc) and the projected spacing between ArTéMiS clumps (0.2–0.3 pc) are roughly consistent with the effective Jeans length (0.08 ± 0.03 pc) in the filament and a physical scale of about four times the filament width, respectively, if the inclination angle of the filament to line of sight is ~30°. These two distinct separation scales are suggestive of a bimodal fragmentation process in the filament.
Conclusions. Despite being one order of magnitude denser and more massive than the Taurus B211/B213 filament, the NGC 6334 filament has a density and velocity structure that is qualitatively very similar. The main difference is that the dense cores embedded in the NGC 6334 filament appear to be an order of magnitude denser and more massive than the cores in the Taurus filament. This suggests that dense molecular filaments may evolve and fragment in a similar manner in low- and high-mass star-forming regions, and that the filament paradigm may hold in the intermediate-mass (if not high-mass) star formation regime.
Key words: ISM: clouds / ISM: structure / stars: formation
The final data used in the paper (FITS) are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/632/A83
© Y. Shimajiri et al. 2019
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.