Free Access
Issue
A&A
Volume 648, April 2021
Article Number A74
Number of page(s) 18
Section Cosmology (including clusters of galaxies)
DOI https://doi.org/10.1051/0004-6361/202039048
Published online 14 April 2021
  1. Abbott, T. M. C., Aguena, M., Alarcon, A., et al. 2020, Phys. Rev. D, 102 [Google Scholar]
  2. Adler, R. J. 1981, The Geometry of Random Fields (Chichester: John Wiley& Sons, Ltd.) [Google Scholar]
  3. Angulo, R. E., Zennaro, M., Contreras, S., et al. 2020, ArXiv e-prints [arXiv:2004.06245] [Google Scholar]
  4. Asgari, M., Tröster, T., Heymans, C., et al. 2020, A&A, 634, A127 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  5. Bartelmann, M., & Schneider, P. 2001, Phys. Rep., 340, 291 [NASA ADS] [CrossRef] [Google Scholar]
  6. Blaser, N., & Brun, M. 2019, ArXiv e-prints [arXiv:1911.07484] [Google Scholar]
  7. Bresten, C., & Jung, J. H. 2019, ArXiv e-prints [arXiv:1910.08245] [Google Scholar]
  8. Bubenik, P. 2015, J. Mach. Learn. Res., 16, 77 [Google Scholar]
  9. Burger, P., Schneider, P., Demchenko, V., et al. 2020, A&A, 642, A161 [EDP Sciences] [Google Scholar]
  10. Cheng, S., Ting, Y.-S., Ménard, B., & Bruna, J. 2020, MNRAS, 499, 5902 [CrossRef] [Google Scholar]
  11. de Silva, V., Morozov, D., & Vejdemo-Johansson, M. 2011, Inverse Problems. An International Journal on the Theory and Practice of Inverse Problems, Inverse Methods and Computerized Inversion of Data, 27, 124003 [Google Scholar]
  12. Dlotko, P. 2020, GUDHI User and Reference Manual, 3.1.1 Edition (GUDHI Editorial Board) [Google Scholar]
  13. Edelsbrunner, H., & Harer, J. 2008, in Surveys on Discrete and Computational Geometry (Providence, RI: American Mathematical Society), Contemp. Math., 453, 257 [Google Scholar]
  14. Elbers, W., & van de Weygaert, R. 2019, MNRAS, 486, 1523 [Google Scholar]
  15. Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306 [Google Scholar]
  16. Fu, L., Kilbinger, M., Erben, T., et al. 2014, MNRAS, 441, 2725 [NASA ADS] [CrossRef] [Google Scholar]
  17. Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. 2004, Bayesian Data Analysis, 2nd edn. (Chapman and Hall/CRC) [Google Scholar]
  18. Ghrist, R. 2014, Elementary Applied Topology, 1st edn. (Createspace) [Google Scholar]
  19. Giblin, B., Heymans, C., Harnois-Déraps, J., et al. 2018, MNRAS, 480, 5529 [Google Scholar]
  20. Gruen, D., Friedrich, O., Krause, E., et al. 2018, Phys. Rev. D, 98 [Google Scholar]
  21. Hamana, T., Shirasaki, M., Miyazaki, S., et al. 2020, PASJ, 72, 16 [CrossRef] [Google Scholar]
  22. Hamilton, A. J. S., Gott, J. R., III, & Weinberg, D. 1986, ApJ, 309, 1 [Google Scholar]
  23. Harnois-Déraps, J., & van Waerbeke, L. 2015, MNRAS, 450, 2857 [Google Scholar]
  24. Harnois-Déraps, J., Amon, A., Choi, A., et al. 2018, MNRAS, 481, 1337 [NASA ADS] [CrossRef] [Google Scholar]
  25. Harnois-Déraps, J., Giblin, B., & Joachimi, B. 2019, A&A, 631, A160 [CrossRef] [EDP Sciences] [Google Scholar]
  26. Hartlap, J., Simon, P., & Schneider, P. 2007, A&A, 464, 399 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  27. Hatcher, A. 2002, Algebraic Topology (Cambridge: Cambridge University Press) [Google Scholar]
  28. Heitmann, K., Lawrence, E., Kwan, J., Habib, S., & Higdon, D. 2014, ApJ, 780, 111 [Google Scholar]
  29. Hetterscheidt, M., Erben, T., Schneider, P., et al. 2005, A&A, 442, 43 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  30. Heydenreich, S., Schneider, P., Hildebrandt, H., et al. 2020, A&A, 634, A104 [Google Scholar]
  31. Heymans, C., Grocutt, E., Heavens, A., et al. 2013, MNRAS, 432, 2433 [NASA ADS] [CrossRef] [Google Scholar]
  32. Hikage, C., Oguri, M., Hamana, T., et al. 2019, PASJ, 71, 43 [NASA ADS] [CrossRef] [Google Scholar]
  33. Hildebrandt, H., Viola, M., Heymans, C., et al. 2017, MNRAS, 465, 1454 [Google Scholar]
  34. Hildebrandt, H., Köhlinger, F., van den Busch, J. L., et al. 2020, A&A, 633, A69 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  35. Ivezic, Z., Axelrod, T., Brandt, W. N., et al. 2008, Serb. Astron. J., 176, 1 [NASA ADS] [CrossRef] [Google Scholar]
  36. Jasche, J., & Lavaux, G. 2019, A&A, 625, A64 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  37. Jeffrey, N., Abdalla, F. B., Lahav, O., et al. 2018, MNRAS, 479, 2871 [Google Scholar]
  38. Joudaki, S., Blake, C., Heymans, C., et al. 2017, MNRAS, 465, 2033 [NASA ADS] [CrossRef] [Google Scholar]
  39. Joudaki, S., Hildebrandt, H., Traykova, D., et al. 2020, A&A, 638, L1 [CrossRef] [EDP Sciences] [Google Scholar]
  40. Kacprzak, T., Kirk, D., Friedrich, O., et al. 2016, MNRAS, 463, 3653 [NASA ADS] [CrossRef] [Google Scholar]
  41. Kaiser, N. 1992, ApJ, 388, 272 [Google Scholar]
  42. Kaiser, N., & Squires, G. 1993, ApJ, 404, 441 [NASA ADS] [CrossRef] [Google Scholar]
  43. Kilbinger, M., Fu, L., Heymans, C., et al. 2013, MNRAS, 430, 2200 [NASA ADS] [CrossRef] [Google Scholar]
  44. Laureijs, R., Amiaux, J., Arduini, S., et al. 2011, ArXiv e-prints [arXiv:1110.3193] [Google Scholar]
  45. Liu, J., & Madhavacheril, M. S. 2019, Phys. Rev. D, 99 [Google Scholar]
  46. Liu, X., Pan, C., Li, R., et al. 2015a, MNRAS, 450, 2888 [NASA ADS] [CrossRef] [Google Scholar]
  47. Liu, J., Petri, A., Haiman, Z., et al. 2015b, Phys. Rev. D, 91 [Google Scholar]
  48. Lo, D., & Park, B. 2018, PLoS One, 13 [Google Scholar]
  49. MacPherson, R., & Schweinhart, B. 2012, J. Math. Phys., 53 [Google Scholar]
  50. Makarenko, I., Shukurov, A., Henderson, R., et al. 2018, MNRAS, 475, 1843 [Google Scholar]
  51. Marques, G. A., Liu, J., Zorrilla Matilla, J. M., et al. 2019, JCAP, 2019, 019 [Google Scholar]
  52. Martinet, N., Schneider, P., Hildebrandt, H., et al. 2018, MNRAS, 474, 712 [NASA ADS] [CrossRef] [Google Scholar]
  53. Mootoovaloo, A., Heavens, A. F., Jaffe, A. H., & Leclercq, F. 2020, MNRAS, 497, 2213 [Google Scholar]
  54. Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493 [NASA ADS] [CrossRef] [Google Scholar]
  55. Nicolau, M., Levine, A. J., & Carlsson, G. 2011, Proc. Natl. Acad. Sci., 108, 7265 [Google Scholar]
  56. Otter, N., Porter, M. A., Tillmann, U., Grindrod, P., & Harrington, H. A. 2017, EPJ Data Sci., 6, A17 [Google Scholar]
  57. Oudot, S. Y. 2015, in Persistence Theory: from Quiver Representations to Data Analysis (Providence, RI: American Mathematical Society), Math. Surv. Monogr., 209, 218 [Google Scholar]
  58. Parroni, C., Cardone, V. F., Maoli, R., & Scaramella, R. 2020, A&A, 633, A71 [CrossRef] [EDP Sciences] [Google Scholar]
  59. Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, J. Mach. Learn. Res., 12, 2825 [Google Scholar]
  60. Petri, A., Liu, J., Haiman, Z., et al. 2015, Phys. Rev. D, 91 [Google Scholar]
  61. Planck Collaboration VI. 2020, A&A, 641, A6 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  62. Pokorny, F. T., Goldberg, K., & Kragic, D. 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA), 16 [Google Scholar]
  63. Pranav, P., Edelsbrunner, H., van de Weygaert, R., et al. 2017, MNRAS, 465, 4281 [Google Scholar]
  64. Pranav, P., Adler, R. J., Buchert, T., et al. 2019a, A&A, 627, A163 [EDP Sciences] [Google Scholar]
  65. Pranav, P., van de Weygaert, R., Vegter, G., et al. 2019b, MNRAS, 485, 4167 [Google Scholar]
  66. Pun, C. S., Xia, K., & Lee, S. X. 2018, ArXiv e-prints [arXiv:1811.00252] [Google Scholar]
  67. Reininghaus, J., Huber, S., Bauer, U., & Kwitt, R. 2015, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4741 [Google Scholar]
  68. Riess, A. G., Casertano, S., Yuan, W., Macri, L. M., & Scolnic, D. 2019, ApJ, 876, 85 [Google Scholar]
  69. Schirmer, M., Erben, T., Hetterscheidt, M., & Schneider, P. 2007, A&A, 462, 875 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  70. Schneider, P. 1996, MNRAS, 283, 837 [Google Scholar]
  71. Schneider, P., & Lombardi, M. 2003, A&A, 397, 809 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  72. Schneider, P., Eifler, T., & Krause, E. 2010, A&A, 520, A116 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  73. Seitz, S., & Schneider, P. 2001, A&A, 374, 740 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  74. Sellentin, E., & Heavens, A. F. 2016, MNRAS, 456, L132 [Google Scholar]
  75. Shan, H., Liu, X., Hildebrandt, H., et al. 2018, MNRAS, 474, 1116 [Google Scholar]
  76. Sousbie, T. 2011, MNRAS, 414, 350 [NASA ADS] [CrossRef] [Google Scholar]
  77. Spergel, D., Gehrels, N., Breckinridge, J., et al. 2013, ArXiv e-prints [arXiv:1305.5422] [Google Scholar]
  78. Taylor, P. L., Kitching, T. D., Alsing, J., et al. 2019, Phys. Rev. D, 100 [Google Scholar]
  79. Troxel, M. A., MacCrann, N., Zuntz, J., et al. 2018, Phys. Rev. D, 98 [Google Scholar]
  80. Unruh, S., Schneider, P., Hilbert, S., et al. 2020, A&A, 638, A96 [CrossRef] [EDP Sciences] [Google Scholar]
  81. van de Weygaert, R., Vegter, G., Edelsbrunner, H., et al. 2013, ArXiv e-prints [arXiv:1306.3640] [Google Scholar]
  82. van Uitert, E., Joachimi, B., Joudaki, S., et al. 2018, MNRAS, 476, 4662 [Google Scholar]
  83. Wright, A. H., Hildebrandt, H., Kuijken, K., et al. 2019, A&A, 632, A34 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  84. Wright, A. H., Hildebrandt, H., van den Busch, J. L., et al. 2020, A&A, 640, L14 [CrossRef] [EDP Sciences] [Google Scholar]
  85. Xu, X., Cisewski-Kehe, J., Green, S. B., & Nagai, D. 2019, Astron. Comput., 27, 34 [Google Scholar]
  86. Zürcher, D., Fluri, J., Sgier, R., Kacprzak, T., & Refregier, A. 2021, JCAP, 2021, 028 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.