Free Access
Issue
A&A
Volume 523, November-December 2010
Article Number A61
Number of page(s) 15
Section Catalogs and data
DOI https://doi.org/10.1051/0004-6361/201014935
Published online 17 November 2010

© ESO, 2010

1. Introduction

The INTEGRAL observatory (Winkler et al. 2003) has been successfully operating in orbit since its launch in 2002. The high sensitivity and relatively good angular resolution of its instruments, in particular the coded-mask telescope IBIS (Ubertini et al. 2003), makes surveying the sky in hard X-rays one of the primary goals of INTEGRAL. The main scientific results and source catalogs have been reported in many relevant papers: Revnivtsev et al. (2003d, 2006), Molkov et al. (2004), Krivonos et al. (2005b, 2007b), Bird et al. (2004, 2006, 2007, 2010), Bassani et al. (2006), Bazzano et al. (2006), Sazonov et al. (2007), Beckmann et al. (2009).

Recently, great progress in surveying the hard X-ray sky was achieved with the Burst Alert Telescope (BAT; Barthelmy et al. 2005) at the Swift observatory (Gehrels et al. 2004). As seen from the large sample of detected active galactic nuclei (AGN; Tueller et al. 2010; Cusumano et al. 2010), the results of the Swift/BAT all-sky survey are very valuable for extragalactic studies.

In contrast to Swift, with a nearly uniform survey, the INTEGRAL observatory provides the sky survey with exposure that is more concentrated in the Galactic plane (GP). This fact makes the Swift/BAT and INTEGRAL/IBIS surveys complementary to each other.

In our first paper in a series (Krivonos et al. 2010), we presented the hard X-ray survey based on the improved sky reconstruction method for the IBIS telescope. The sensitivity of the survey was significantly improved by suppressing the systematic noise. Here we present the catalog of the sources detected in the survey.

2. Survey

With the 7-year mission data (December 2002 – July 2009), we conducted the all-sky survey in the working energy band 17 − 60 keV. The full analyzed data set comprises  ~ 83 Ms of effective (dead time-corrected) exposure. The minimum sensitivity of the survey was 3.7 × 10-12 erg s-1 cm-2  ( ~ 0.26 mCrab1 in 17 − 60 keV) at a 5σ detection level. The survey covered 90% of the sky down to the flux limit of 6.2 × 10-11 erg s-1 cm-2  ( ~ 4.32 mCrab) and 10% of the sky area down to the flux limit of 8.6 × 10-12 erg s-1 cm-2  ( ~ 0.60 mCrab).

thumbnail Fig. 1

The 17 − 60 keV light curves (left) and histograms of the corresponding flux distribution (right) of two sources in the catalog: persistently detected and highly variable LMXB GX 349+2, and HMXB transient 4U 1901+03. The blue dotted lines in the left hand figures represent the flux of the sources measured on a 7-year time-averaged map. The first flux bin in the right histograms contains counts from the range  [−5,5]  mCrab, and the flux measurements with error  > 5 mCrab were dropped.

Open with DEXTER

In the current survey we perform a census of hard X-ray sources detected on the all-time averaged sky frame. However, a number of sources was detected in various subsamples of exposures during periods of outburst activity. Apart from the catalog, we provided the light curves of detected sources averaged over each spacecraft orbit (3 days). However, we did not attempt to look for sources on time scales midway between one orbit and seven years. This issue was addressed in the recent catalog survey by Bird et al. (2010).

We divided all sources detected in the current survey into the two classes according to their detection condition. The Long-term Detected (LtD) sources were found on the 7-year, time-averaged map above 5σ detection threshold. We checked that the measured flux was not dominated by a single event of strong outburst activity; however, the time-averaged flux may contain intrinsic source variability (Fig. 1). The list of Short-term Detected (StD) sources contains objects significantly detected on the time scales of spacecraft orbit (~3 days) or set of orbits (~ weeks). During 7 years of the INTEGRAL survey, some sources demonstrated periods of strong outburst activity, while they were not detected over the remaining time span of observations (e.g. 4U 1901+03, Fig. 1). The source in outburst can be so bright that it may be detected on the all-time averaged sky map. Nevertheless we consider these sources as StD.

The above classification did not strictly follow the physical understanding of persistent and transient sources. Some objects (except one-time events) may move from LtD to StD and vice versa with the new observational data and other selection criteria. Exact classification of sources we leave to the interested reader. To do this, we provide light curves of detected sources and histograms of its flux distribution (Sect. 6). As a demonstration, we show two examples listed in the catalog, the LtD source LMXB GX 349+2 and HMXB transient 4U 1901+03 as StD source in outburst (Galloway et al. 2005).

With the new data sets obtained by the INTEGRAL since 2006, several faint sources with a known nature detected in our previous survey (Krivonos et al. 2007b, referred to as K07) fell below a 5σ detection threshold, probably owing to intrinsic variability. We included 19 known cataloged sources in the current survey with detection significance in the range 4.7 − 5.0σ; however, we emphasize that for statistical studies only those LtD (persistent) sources should be used from the catalog that have a statistical significance higher than 5σ.

Table 1

Catalog source statistics and comparison with the previous survey K07.

3. Detection of sources

We performed a search for sources on 25° × 25° sky mosaics covering the whole sky. By analogy with K07, the sources were searched as excesses on ISGRI sky maps, convolved with a Gaussian representing the effective instrumental PSF.

The search was made on a minimum time scale of each spacecraft orbit (3 days) and over the whole time span of 7 years. Following K07, we adopted the corresponding detection thresholds of (S/N)lim > 5.5σ and (S/N)lim > 5σ to ensure that the final catalog contains fewer than 1−2 spurious sources.

By searching the final average map for the local maxima, we found 449 excesses above 5σ. The list of transiently detected sources contains 53 objects. The positions of newly detected sources were cross-correlated with SIMBAD and NED cataloges using a 4.2 arcmin search radius (90% confidence level for a source detected at 5−6 standard deviations, K07), and the recent Swift survey source cataloges reported in papers by Tueller et al. (2010) and Cusumano et al. (2010). Utilizing the whole available information for the sources with firm identification and sources with tentative but unconfirmed classification of a given type (later referred to as having “a suspected origin”), we have identified 221 extragalactic objects and 262 galactic sources. The total number of unidentified sources on the time averaged map above 5σ detection threshold is 38. Most of them (29) are located in the GP at latitudes  |b|  < 5° (see Table 1 for source statistics).

4. Catalog of sources

The full list of sources is presented in Table 2, and its contents are described below.

Column (1) “Id” – source sequence number in the catalog.

Column (2) “Name” – source name. Their common names are given for sources whose nature was known before their detection by INTEGRAL. Sources discovered by INTEGRAL or those whose nature was established thanks to INTEGRAL are named “IGR”

Columns (3, 4) “RA, Dec” – source equatorial (J2000) coordinates.

Column (5) “Flux, 17 − 60 keV” – time-averaged source flux in mCrab units.

Column (6) “Type” – general astrophysical type of the object: LMXB (HMXB) – low- (high-) mass X-ray binary, AGN – active galactic nucleus, SNR/PWN – supernova remnant, CV – cataclysmic variable, PSR – isolated pulsar or pulsar wind nebula, SGR – soft gamma repeater, RS CVn – coronally active binary star, SymbStar – symbiotic star, Cluster – cluster of galaxies. The question mark indicates that the specified type is not firmly determined, so it should be confirmed. The census of these sources is marked in Table 1 with S index.

Column (7) “Ref.” – references. These are mainly provided for new sources and are related to their discovery and/or nature.

Column (8) “Notes” – additional notes such as type subclass, redshift information, alternative source names. Redshift of the extragalactic sources was obtained from the SIMBAD and NED database.

In Table 1 we present source statistics for types, detections in GP ( | b |  < 5°), high galactic latitude sky ( | b |  > 5°), and comparison with our previous 4-year survey K07.

Active galactic nuclei – the AGN sample was substantially increased by a factor of 2 with respect to the K07 due to increased extragalactic exposure. Most of the objects were detected on the 7-year time-averaged sky. About thirty AGNs were found in the GP. The statistically clear sample of 162 AGNs, which is confidently detected (>5σ) and selected in the extragalactic sky (|b|  > 5°), is very valuable for the AGN population studies because of the high identification completeness of the survey, which is (NTot − NNotID)/NTot = 1−9/226 = 0.96.

LMXB and HMXB – the low- and high- mass X-ray binaries, as before, dominate the Galactic sample of the survey. As seen in Table 1, the number of LMXBs and HMXBs was increased mainly by StD sources. With the new observational data, 13 HMXBs and 6 LMXBs persistently detected in K07 have now been moved now to the StDs2 according to detection conditions described in Sect. 2.

Cataclysmic variables – similar to the AGNs sample, the number of CVs was increased by a factor of 2 thanks to the additional high galactic latitude observations. Most of the CVs were recorded as LtD, except for FO Aqr and V1062 Tau. The position of FO Aqr has very poor coverage by INTEGRAL observations and the source was significantly detected during only one spacecraft orbit. V1062 Tau is located in the region with a high systematic noise from the bright source Crab Nebula, which prevented its persistent detection. However, during the 215 ks observations of Crab in August 2003, the source V1062 Tau was detected with significance  ~7σ.

Other types – the other populations of sources (clusters, SNR, PSR, symbiotic stars, etc.) were persistently detected on the 7-year maps and mainly in the GP. The total number has not substantially changed since K07. The number of clusters of galaxies was increased by detection of Triangulum A Cluster, in addition to Coma, Perseus, and Oph Cluster.

Unidentified sources – dominant in the GP and mainly LtDs, 29 unidentified objects detected above 5σ threshold at  |b|  < 5°, made the survey in the GP identified at a level of  ~87%. If we take the suspected nature of 14 LtD sources into account, the identification completeness of the survey at  |b|  < 5° becomes  ~93%. Most of the unidentified, transiently detected sources (StDs) were found in the GP, which implicitly points to their Galactic and probably X-ray binary origin.

5. Extragalactic Log N–Log S

Under the assumption that AGNs are uniformly distributed over the sky, we can construct the number-flux function of hard X-ray emitting AGNs. Since INTEGRAL observations cover the sky inhomogeneously, we should consider the sensitivity map in constructing number-flux functions. This was done by dividing the source counts by the sky coverage at the 5σ level as a function of flux (see Fig. 12 in Krivonos et al. 2010). In Fig. 2 we show the cumulative log N − log S distribution of 158 nonblazar AGNs derived over the whole sky, excluding the GP (|b|  < 5°). The log N − log S distribution can be fitted well by a power law: N(>S) = AS − α. Using a maximum-likelihood estimator (see e.g. Jauncey 1967; Crawford et al. 1970), we determined the best-fit values of the slope and normalization: α = 1.56 ± 0.10 and A = (3.59 ± 0.35) × 10-3 deg-2 at S = 2 × 10-11 erg s-1 cm-2. The observed log N − log S slope is consistent with a homogeneous distribution of sources in space (α = 3/2) and implies that AGNs with fluxes exceeding the survey detection threshold at the extragalactic coverage (|b|  > 5°) account for  ~1% of the intensity of the cosmic X-ray background in the 17−60 keV band.

We compared the obtained log N − log S distribution with the one derived from the Swift/BAT AGN sample of 199 objects by Ajello et al. (2009). To make the correct flux conversion between 15 − 55 keV energy range used in Ajello et al. (2009) and 17 − 60 keV band of this work, we had to take different assumed Crab spectra into account. We assumed Crab spectrum  phot cm-2 s-1 keV-1, while Ajello et al. (2009) used  phot cm-2 s-1 keV-1. We converted log N − log S by Ajello et al. (2009) to “our” 17 − 60 keV energy band, and overplotted it in Fig. 2. We also estimated the AGN surface density at flux 2 × 10-11erg s-1 cm-2 using the log N − log S by Ajello et al. (2009) and found it (2.86 × 10-3 deg-2) in a 2σ confidence interval of the measured normalization A. Obviously, the AGN number-flux relation obtained with INTEGRAL and Swift/BAT are in good agreement. Recently, Cusumano et al. (2010) found full agreement between their AGN log N − log S measured with Swift/BAT and INTEGRAL (K07).

6. Concluding remarks

We have presented the catalog of sources detected in the hard X-ray (17 − 60 keV) whole-sky survey performed at the INTEGRAL observatory over seven years (Krivonos et al. 2010). Our catalog contains 521 sources of different types. According to detection conditions, we divided all sources between LtD and StD. The statistically clear sample of 449 LtD sources was found on the averaged sky map above 5σ detection level, and 53 StD sources were detected in the different subsamples of exposures.

Among the Galactic sources with firmly known and suspected nature, we found 101 LMXBs, 94 HMXBs, 37 CVs, and 30 of other types. Among known and suspected extragalactic identifications, we found 217 AGNs and 4 galaxy clusters. We presented the detailed catalog source statistics in the Table 1.

We would like to stress that our survey has high identification completeness with respect to the confidently detected (>5σ) and persistent (LtD) sources. Considering detected objects with firm and tentative classification, the survey’s completeness in GP (|b|  < 5°) is  ~93% and the extragalactic selection (|b|  > 5°) is  ~96%.

Our survey provides the highest sensitivity in the GP, reaching the limiting flux of  ~0.26 mCrab or 3.7 × 10-12 erg s-1 cm-2  in the working energy band 17 − 60 keV. The faintest Galactic source is a type-I X-ray burster AX J1754.2-2754 (Chelovekov & Grebenev 2007a,b) detected on the time-averaged map at 6.4σ with a flux of 0.32 mCrab (4.6 × 10-12 erg s-1 cm-2).

The Galactic sample of the new survey allows us to significantly extend the study of the faint end of the galactic X-ray binary population (Revnivtsev et al. 2008) with luminosities  ~4 × 1034   erg   s-1 (at the distance of the Galactic center). Apart from the catalog of sources available online3,4, we provide the scientific community with the light curves of detected sources averaged over each INTEGRAL orbit (3 days) and histograms of the corresponding flux distribution (see examples in Fig. 1).

thumbnail Fig. 2

Number flux relation of extragalactic objects at  |b|  > 5° (red points) built from a nonblazar AGN sample containing 158 objects detected above 5σ. The best-fitting power law is shown by the black solid line. The blue curve represents AGN log N − log S measured by Ajello et al. (2009) with Swift/BAT.

Open with DEXTER

Table 2

The catalog of sources detected during the INTEGRAL/IBIS 7-year all-sky survey.


1

A flux of 1 mCrab in the 17−60 keV energy band corresponds to 1.43 × 10-11 erg s-1 cm-2  for a source with a Crab-like spectrum.

2

HMXB: V 0332+53, A 0535+262, IGR J21343+4738, 4U 0115+63, IGR J16358-4726, GRO J1008-57, IGR J11215-5952, XTE J1543-568, IGR J16465-4507, KS 1716-389, A 1845-024, XTE J1858+034, 4U 1901+03; LMXB: IGR J00291+5934, XTE J1550-564, XTE J1720-318, SLX 1746-331, XTE J1807-294, XTE J1817-330.

Acknowledgments

The data were obtained from the European and Russian INTEGRAL Science Data Centers56. This work was supported by the President of the Russian Federation (through the program supporting leading scientific schools, project NSH-5069.2010.2), by the Presidium of the Russian Academy of Sciences/RAS (program P19 “Origin, Structure, and Evolution of Objects of the Universe”), by the Russian Basic Research Foundation (project 09-02-00867), and by the Division of Physical Sciences of the RAS (the program “Extended objects in the Universe”, OFN-16).

References

  1. Abdo, A. A., Ackermann, M., Ajello, M., et al. 2009, ApJ, 707, L142 [NASA ADS] [CrossRef] [Google Scholar]
  2. Ajello, M., Costamante, L., Sambruna, R. M., et al. 2009, ApJ, 699, 603 [NASA ADS] [CrossRef] [Google Scholar]
  3. Aleksandrovich, N. L., Aref’ev, V. A., Borozdin, K. N., Syunyaev, R. A., & Skinner, G. K. 1995, Astron. Lett., 21, 431 [NASA ADS] [Google Scholar]
  4. Altamirano, D., Galloway, D., Chenevez, J., et al. 2008, The Astronomer’s Telegram, 1651, 1 [NASA ADS] [Google Scholar]
  5. Augello, G., Iaria, R., Robba, N. R., et al. 2003, ApJ, 596, L63 [NASA ADS] [CrossRef] [Google Scholar]
  6. Barlow, E. J., Bird, A. J., Clark, D. J., et al. 2005, A&A, 437, L27 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  7. Barlow, E. J., Knigge, C., Bird, A. J., et al. 2006, MNRAS, 372, 224 [NASA ADS] [CrossRef] [Google Scholar]
  8. Barthelmy, S. D., Barbier, L. M., Cummings, J. R., et al. 2005, Space Sci. Rev., 120, 143 [NASA ADS] [CrossRef] [Google Scholar]
  9. Bassa, C. G., Jonker, P. G., in’t Zand, J. J. M., & Verbunt, F. 2006, A&A, 446, L17 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  10. Bassani, L., De Rosa, A., Bazzano, A., et al. 2005, ApJ, 634, L21 [NASA ADS] [CrossRef] [Google Scholar]
  11. Bassani, L., Molina, M., Malizia, A., et al. 2006, ApJ, 636, L65 [NASA ADS] [CrossRef] [Google Scholar]
  12. Bassani, L., Landi, R., Malizia, A., et al. 2007, ApJ, 669, L1 [NASA ADS] [CrossRef] [Google Scholar]
  13. Bassani, L., Landi, R., Campana, R., et al. 2009, MNRAS, 395, L1 [NASA ADS] [CrossRef] [Google Scholar]
  14. Bazzano, A., Stephen, J. B., Fiocchi, M., et al. 2006, ApJ, 649, L9 [NASA ADS] [CrossRef] [Google Scholar]
  15. Beckmann, V., Kennea, J. A., Markwardt, C., et al. 2005, ApJ, 631, 506 [NASA ADS] [CrossRef] [Google Scholar]
  16. Beckmann, V., Soldi, S., Ricci, C., et al. 2009, A&A, 505, 417 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  17. Bikmaev, I. F., Sunyaev, R. A., Revnivtsev, M. G., & Burenin, R. A. 2006a, Astron. Lett., 32, 221 [NASA ADS] [CrossRef] [Google Scholar]
  18. Bikmaev, I. F., Revnivtsev, M. G., Burenin, R. A., & Sunyaev, R. A. 2006b, Astron. Lett., 32, 588 [NASA ADS] [CrossRef] [Google Scholar]
  19. Bikmaev, I. F., Burenin, R. A., Revnivtsev, M. G., et al. 2008a, Astron. Lett., 34, 653 [NASA ADS] [CrossRef] [Google Scholar]
  20. Bikmaev, I., Revnivtsev, M., Burenin, R., et al. 2008b, The Astronomer’s Telegram, 1363, 1 [NASA ADS] [Google Scholar]
  21. Bird, A. J., Barlow, E. J., Bassani, L., et al. 2004, ApJ, 607, L33 [NASA ADS] [CrossRef] [Google Scholar]
  22. Bird, A. J., Barlow, E. J., Bassani, L., et al. 2006, ApJ, 636, 765 [NASA ADS] [CrossRef] [Google Scholar]
  23. Bird, A. J., Malizia, A., Bazzano, A., et al. 2007, ApJS, 170, 175 [NASA ADS] [CrossRef] [Google Scholar]
  24. Bird, A. J., Bazzano, A., Bassani, L., et al. 2010, ApJS, 186, 1 [NASA ADS] [CrossRef] [Google Scholar]
  25. Bodaghee, A., Walter, R., Zurita Heras, J. A., et al. 2006, A&A, 447, 1027 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  26. Brandt, S., Kuulkers, E., Bazzano, A., et al. 2005, The Astronomer’s Telegram, 622, 1 [NASA ADS] [CrossRef] [Google Scholar]
  27. Brandt, S., Budtz-Jørgensen, C., & Chenevez, J. 2006a, The Astronomer’s Telegram, 778, 1 [NASA ADS] [Google Scholar]
  28. Brandt, S., Budtz-Jorgensen, C., Chenevez, J., et al. 2006b, The Astronomer’s Telegram, 970, 1 [NASA ADS] [Google Scholar]
  29. Brandt, S., Budtz-Jørgensen, C., Gotz, D., Hurley, K., & Frontera, F. 2007, The Astronomer’s Telegram, 1054, 1 [NASA ADS] [Google Scholar]
  30. Brunschweiger, J., Greiner, J., Ajello, M., & Osborne, J. 2009, A&A, 496, 121 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  31. Burenin, R., Mescheryakov, A., Revnivtsev, M., Bikmaev, I., & Sunyaev, R. 2006a, The Astronomer’s Telegram, 880, 1 [NASA ADS] [Google Scholar]
  32. Burenin, R., Mescheryakov, A., Sazonov, S., et al. 2006b, The Astronomer’s Telegram, 883, 1 [NASA ADS] [Google Scholar]
  33. Burenin, R., Revnivtsev, M., Mescheryakov, A., et al. 2007, The Astronomer’s Telegram, 1270, 1 [NASA ADS] [Google Scholar]
  34. Burenin, R. A., Mescheryakov, A. V., Revnivtsev, M. G., et al. 2008, Astron. Lett., 34, 367 [NASA ADS] [CrossRef] [Google Scholar]
  35. Burenin, R., Makarov, D., Uklein, R., Revnivtsev, M., & Lutovinov, A. 2009, The Astronomer’s Telegram, 2193, 1 [NASA ADS] [Google Scholar]
  36. Butters, O. W., Barlow, E. J., Norton, A. J., & Mukai, K. 2007, A&A, 475, L29 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  37. Butler, S. C., Tomsick, J. A., Chaty, S., et al. 2009, ApJ, 698, 502 [NASA ADS] [CrossRef] [Google Scholar]
  38. Bykov, A. M., Krassilchtchikov, A. M., Uvarov, Yu. A., et al. 2004, A&A, 427, L21 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  39. Bykov, A. M., Krassilchtchikov, A. M., Uvarov, Yu. A., et al. 2006, ApJ, 649, L21 [NASA ADS] [CrossRef] [Google Scholar]
  40. Bélanger, G., Goldwurm, A., Renaud, M., et al. 2006, ApJ, 636, 275 [NASA ADS] [CrossRef] [Google Scholar]
  41. Cackett, E. M., Wijnands, R., & Remillard, R. 2006, MNRAS, 369, 1965 [NASA ADS] [CrossRef] [Google Scholar]
  42. Cadol le Bel, M., Ribó, M., Rodriguez, J., et al. 2007, ApJ, 659, 549 [NASA ADS] [CrossRef] [Google Scholar]
  43. Chaty, S., Rahoui, F., Foellmi, C., et al. 2008, A&A, 484, 783 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  44. Chelovekov, I. V., & Grebenev, S. A. 2007a, The Astronomer’s Telegram, 1094, 1 [NASA ADS] [Google Scholar]
  45. Chelovekov, I. V., & Grebenev, S. A. 2007b, Astron. Lett., 33, 807 [NASA ADS] [CrossRef] [Google Scholar]
  46. Chelovekov, I., & Grebenev, S. 2010, PoS, 96, 66 [arXiv:1004.4086] [Google Scholar]
  47. Chelovekov, I. V., Grebenev, S. A., & Sunyaev, R. A. 2007, ESA Spec. Publ., 622, 445 [NASA ADS] [Google Scholar]
  48. Chernyakova, M., Lutovinov, A., Capitanio, F., Lund, N., & Gehrels, N. 2003, The Astronomer’s Telegram, 157, 1 [NASA ADS] [Google Scholar]
  49. Chernyakova, M., Courvoisier, T. J.-L., Rodriguez, J., & Lutovinov, A. 2005a, The Astronomer’s Telegram, 519, 1 [NASA ADS] [Google Scholar]
  50. Chernyakova, M., Lutovinov, A., Rodríguez, J., & Revnivtsev, M. 2005b, MNRAS, 364, 455 [NASA ADS] [CrossRef] [Google Scholar]
  51. Cornelisse, R., Charles, P. A., & Robertson, C. 2006, MNRAS, 366, 918 [NASA ADS] [Google Scholar]
  52. Courvoisier, T. J.-L., Walter, R., Rodriguez, J., Bouchet, L., & Lutovinov, A. A. 2003, IAU Circ., 8063, 3 [NASA ADS] [Google Scholar]
  53. Crawford, D. F., Jauncey, D. L., & Murdoch, H. S. 1970, ApJ, 162, 405 [NASA ADS] [CrossRef] [Google Scholar]
  54. Cusumano, G., La Parola, V., Segreto, A., et al. 2010, A&A, 510, A48 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  55. Dean, A. J., & Hill, A. B. 2008, A&A, 485, 195 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  56. Den Hartog, P. R., Kuiper, L., Hermsen, W., et al. 2005, The Astronomer’s Telegram, 394, 1 [NASA ADS] [Google Scholar]
  57. Donato, D., Sambruna, R. M., & Gliozzi, M. 2005, A&A, 433, 1163 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  58. Enya, K., Yoshii, Y., Kobayashi, Y., et al. 2002, ApJS, 141, 23 [NASA ADS] [CrossRef] [Google Scholar]
  59. Fiocchi, M., Bassani, L., Bazzano, A., et al. 2010, ApJ, 720, 987 [NASA ADS] [CrossRef] [Google Scholar]
  60. Fisher, K. B., Huchra, J. P., Strauss, M. A., et al. 1995, ApJS, 100, 69 [NASA ADS] [CrossRef] [Google Scholar]
  61. Galloway, D. K., Wang, Z., & Morgan, E. H. 2005, ApJ, 635, 1217 [NASA ADS] [CrossRef] [Google Scholar]
  62. Gehrels, N., Chincarini, G., Giommi, P., et al. 2004, ApJ, 611, 1005 [NASA ADS] [CrossRef] [Google Scholar]
  63. Gotz, D., Schanne, S., Rodriguez, J., et al. 2006, The Astronomer’s Telegram, 813, 1 [NASA ADS] [Google Scholar]
  64. Grebenev, S. A., & Sunyaev, R. A. 2004a, The Astronomer’s Telegram, 332, 1 [NASA ADS] [Google Scholar]
  65. Grebenev, S. A., & Sunyaev, R. A. 2004b, The Astronomer’s Telegram, 342, 1 [NASA ADS] [Google Scholar]
  66. Grebenev, S. A., & Sunyaev, R. A. 2005, Astron. Lett., 31, 672 [NASA ADS] [CrossRef] [Google Scholar]
  67. Grebenev, S. A., & Sunyaev, R. A. 2007, Astron. Lett., 33, 149 [NASA ADS] [CrossRef] [Google Scholar]
  68. Grebenev, S. A., & Sunyaev, R. A. 2010, New fast X-ray transient IGR J18462-0223 discovered by the INTEGRAL observatory, Astron. Lett., 36, in press [Google Scholar]
  69. Grebenev, S. A., Goldoni, P., Schoenfelder, V., et al. 2004a, The Astronomer’s Telegram, 266, 1 [NASA ADS] [Google Scholar]
  70. Grebenev, S. A., Ubertini, P., Chenevez, J., Orr, A., & Sunyaev, R. A. 2004b, The Astronomer’s Telegram, 275, 1 [NASA ADS] [Google Scholar]
  71. Grebenev, S. A., Ubertini, P., Chenevez, J., et al. 2004c, The Astronomer’s Telegram, 350, 1 [NASA ADS] [Google Scholar]
  72. Grebenev, S. A., Molkov, S. V., & Sunyaev, R. A. 2005a, The Astronomer’s Telegram, 444, 1 [NASA ADS] [Google Scholar]
  73. Grebenev, S. A., Molkov, S. V., & Sunyaev, R. A. 2005b, The Astronomer’s Telegram, 446, 1 [NASA ADS] [Google Scholar]
  74. Grebenev, S. A., Bird, A. J., Molkov, S. V., et al. 2005c, The Astronomer’s Telegram, 457, 1 [NASA ADS] [Google Scholar]
  75. Grebenev, S. A., Molkov, S. V., & Sunyaev, R. A. 2005d, The Astronomer’s Telegram, 467, 1 [NASA ADS] [Google Scholar]
  76. Grebenev, S. A., Molkov, S. V., & Sunyaev, R. A. 2005e, The Astronomer’s Telegram, 616, 1 [NASA ADS] [Google Scholar]
  77. Grebenev, S. A., de Cesare, G., Chenevez, J., et al. 2005g, The Astronomer’s Telegram, 647, 1 [NASA ADS] [Google Scholar]
  78. Grebenev, S. A., Revnivtsev, M. G., & Sunyaev, R. A. 2007a, The Astronomer’s Telegram, 1319, 1 [NASA ADS] [Google Scholar]
  79. Grebenev, S. A., Molkov, S. V., Revnivtsev, M. G., & Sunyaev, R. A. 2007b, ESA Spec. Publ., 622, 373 [NASA ADS] [Google Scholar]
  80. Gros, A., Goldwurm, A., Cadolle-Bel, M., et al. 2003, A&A, 411, L179 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  81. Gänsicke, B. T., et al. 2005, MNRAS, 361, 141 [NASA ADS] [CrossRef] [Google Scholar]
  82. den Hartog, P. R., Hermsen, W., Kuiper, L. M., et al. 2004a, The Astronomer’s Telegram, 261, 1 [NASA ADS] [Google Scholar]
  83. den Hartog, P. R., Kuiper, L. M., Corbet, R. H. D., et al. 2004b, The Astronomer’s Telegram, 281, 1 [NASA ADS] [Google Scholar]
  84. Halpern, J. P. 2006, The Astronomer’s Telegram, 847, 1 [NASA ADS] [Google Scholar]
  85. Hannikainen, D. C., Rodriguez, J., & Pottschmidt, K. 2003, IAU Circ., 8088, 4 [NASA ADS] [Google Scholar]
  86. Im, M., Lee, I., Cho, Y., Choi, C., Ko, J., & Song, M. 2007, ApJ, 664, 64 [NASA ADS] [CrossRef] [Google Scholar]
  87. Jauncey, D. L. 1967, Nature, 216, 877 [NASA ADS] [CrossRef] [Google Scholar]
  88. Karasev, D., Tsygankov, S., Lutovinov, A., Churazov, E., & Sunyaev, R. 2007a, The Astronomer’s Telegram, 1245, 1 [NASA ADS] [Google Scholar]
  89. Karasev, D. I., Lutovinov, A. A., & Grebenev, S. A. 2007b, Astron. Lett., 33, 159 [NASA ADS] [CrossRef] [Google Scholar]
  90. Karasev, D. I., Lutovinov, A. A., Tsygankov, S. S., Burenin, R. A., 2009, Published in Proceedings of the Workshop, The Extreme sky: Sampling the Universe above 10 keV (Otranto/Italy, October 13−17, 2009), PoS, 103 [Google Scholar]
  91. Keek, S., Kuiper, L., & Hermsen, W. 2006, The Astronomer’s Telegram, 810, 1 [NASA ADS] [Google Scholar]
  92. Kniazev, A., Revnivtsev, M., Sazonov, S., Burenin, R., & Tekola, A. 2008, The Astronomer’s Telegram, 1488, 1 [NASA ADS] [Google Scholar]
  93. Kniazev, A., Revnivtsev, M., Burenin, R., & Tkachenko, A. 2010, The Astronomer’s Telegram, 2457, 1 [NASA ADS] [Google Scholar]
  94. Kretschmar, P., Mereghetti, S., Hermsen, W., et al. 2004, The Astronomer’s Telegram, 345, 1 [NASA ADS] [Google Scholar]
  95. Krivonos, R., Molkov, S., Revnivtsev, M., et al. 2005a, The Astronomer’s Telegram, 545, 1 [NASA ADS] [Google Scholar]
  96. Krivonos, R., Vikhlinin, A., Churazov, E., et al. 2005b, ApJ, 625, 89 [NASA ADS] [CrossRef] [Google Scholar]
  97. Krivonos, R., Revnivtsev, M., Churazov, E., et al. 2007a, A&A, 463, 957 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  98. Krivonos, R., Revnivtsev, M., Lutovinov, A., et al. 2007b, A&A, 475, 775 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  99. Krivonos, R., Tsygankov, S., Sunyaev, R., et al. 2009, The Astronomer’s Telegram, 2170, 1 [NASA ADS] [Google Scholar]
  100. Krivonos, R., Revnivtsev, M., Tsygankov, S., et al. 2010, A&A, 519, A107 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  101. Kuiper, L., & Hermsen, W. 2009, A&A, 501, 1031 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  102. Kuiper, L., Jonker, P., Hermsen, W., & O’Brien, K. 2005, The Astronomer’s Telegram, 654, 1 [NASA ADS] [Google Scholar]
  103. Kuiper, L., Keek, S., Hermsen, W., Jonker, P. G., & Steeghs, D. 2006a, The Astronomer’s Telegram, 684, 1 [NASA ADS] [Google Scholar]
  104. Kuiper, L., den Hartog, P. R., & Hermsen, W. 2006b, The Astronomer’s Telegram, 939, 1 [NASA ADS] [Google Scholar]
  105. Kuulkers, E., Lutovinov, A., Parmar, A., et al. 2003, The Astronomer’s Telegram, 149, 1 [NASA ADS] [Google Scholar]
  106. Kuulkers, E., Shaw, S., Paizis, A., et al. 2006, The Astronomer’s Telegram, 874, 1 [NASA ADS] [Google Scholar]
  107. Landi, R., Masetti, N., Morelli, L., et al. 2007, ApJ, 669, 109 [NASA ADS] [CrossRef] [Google Scholar]
  108. Landi, R., Masetti, N., Malizia, A., et al. 2008, The Astronomer’s Telegram, 1539, 1 [NASA ADS] [Google Scholar]
  109. Landi, R., Stephen, J. B., Masetti, N., et al. 2009, A&A, 493, 893 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  110. Landi, R., Bassani, L., Malizia, A., et al. 2010, MNRAS, 403, 945 [NASA ADS] [CrossRef] [Google Scholar]
  111. Leyder, J.-C., Walter, R., & Rauw, G. 2008, A&A, 477, L29 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  112. Liu, Q. Z., van Paradijs, J., & van den Heuvel, E. P. J. 2000, A&AS, 147, 25 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  113. Liu, Q. Z., van Paradijs, J., & van den Heuvel, E. P. J. 2001, A&A, 368, 1021 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  114. Lubinski, P., Bel, M. G., von Kienlin, A., et al. 2005, The Astronomer’s Telegram, 469, 1 [NASA ADS] [Google Scholar]
  115. Lutovinov, A. A., & Revnivtsev, M. G. 2003, Astron. Lett., 29, 719 [NASA ADS] [CrossRef] [Google Scholar]
  116. Lutovinov, A., Rodriguez, J., Produit, N., et al. 2003a, The Astronomer’s Telegram, 151, 1 [NASA ADS] [Google Scholar]
  117. Lutovinov, A., Shaw, S., Foschini, L., & Paul, J. 2003b, The Astronomer’s Telegram, 154, 1 [NASA ADS] [Google Scholar]
  118. Lutovinov, A., Walter, R., Belanger, G., et al. 2003c, The Astronomer’s Telegram, 155, 1 [NASA ADS] [Google Scholar]
  119. Lutovinov, A., Cadol le Bel, M., Belanger, G., et al. 2004a, The Astronomer’s Telegram, 328, 1 [NASA ADS] [Google Scholar]
  120. Lutovinov, A., Rodrigues, J., Budtz-Jorgensen, C., Grebenev, S., & Winkler, C. 2004b, The Astronomer’s Telegram, 329, 1 [NASA ADS] [Google Scholar]
  121. Lutovinov, A., Revnivtsev, M., Molkov, S., & Sunyaev, R. 2005a, A&A, 430, 997 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  122. Lutovinov, A., Rodriguez, J., Revnivtsev, M., & Shtykovskiy, P. 2005b, A&A, 433, L41 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  123. Lutovinov, A., Revnivtsev, M., Gilfanov, M., et al. 2005c, A&A, 444, 821 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  124. Lutovinov, A., Burenin, R., Revnivtsev, M., Suleimanov, V., Tkachenko, A. 2010a, Astron. Lett., 36, 12 [NASA ADS] [CrossRef] [Google Scholar]
  125. Lutovinov, A., Burenin, R., Sazonov, S., et al. 2010b, The Astronomer’s Telegram, 2759, 1 [NASA ADS] [Google Scholar]
  126. Malizia, A., Bassani, L., Stephen, J. B., et al. 2005, ApJ, 630, L157 [NASA ADS] [CrossRef] [Google Scholar]
  127. Malizia, A., Bassani, L., Sguera, V., et al. 2010, MNRAS, 408, 975 [NASA ADS] [CrossRef] [Google Scholar]
  128. Markwardt, C. B. 2008, The Astronomer’s Telegram, 1686, 1 [NASA ADS] [Google Scholar]
  129. Markwardt, C. B., & Swank, J. H. 2008, The Astronomer’s Telegram, 1425, 1 [NASA ADS] [Google Scholar]
  130. Masetti, N., Palazzi, E., Bassani, L., Malizia, A., & Stephen, J. B. 2004, A&A, 426, L41 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  131. Masetti, N., Bassani, L., Bird, A. J., & Bazzano, A. 2005, The Astronomer’s Telegram, 528, 1 [NASA ADS] [Google Scholar]
  132. Masetti, N., Pretorius, M. L., Palazzi, E., et al. 2006a, A&A, 449, 1139 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  133. Masetti, N., Bassani, L., Bazzano, A., et al. 2006b, A&A, 455, 11 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  134. Masetti, N., Morelli, L., Palazzi, E., et al. 2006c, A&A, 459, 21 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  135. Masetti, N., Bassani, L., Dean, A. J., Ubertini, P., & Walter, R. 2006d, The Astronomer’s Telegram, 715, 1 [NASA ADS] [Google Scholar]
  136. Masetti, N., Morelli, L., Palazzi, E., et al. 2006e, The Astronomer’s Telegram, 783, 1 [NASA ADS] [Google Scholar]
  137. Masetti, N., Malizia, A., Dean, A. J., Bazzano, A., & Walter, R. 2006f, The Astronomer’s Telegram, 957, 1 [NASA ADS] [Google Scholar]
  138. Masetti, N., Landi, R., Pretorius, M. L., et al. 2007a, A&A, 470, 331 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  139. Masetti, N., Cellone, S. A., Landi, R., et al. 2007b, The Astronomer’s Telegram, 1034, 1 [NASA ADS] [Google Scholar]
  140. Masetti, N., Mason, E., Morelli, L., et al. 2008a, A&A, 482, 113 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  141. Masetti, N., Parisi, P., Palazzi, E., et al. 2008b, The Astronomer’s Telegram, 1620, 1 [NASA ADS] [Google Scholar]
  142. Masetti, N., Parisi, P., Palazzi, E., et al. 2009, A&A, 495, 121 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  143. Masetti, N., Landi, R., Sguera, V., et al. 2010a, A&A, 511, A48 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  144. Masetti, N., Parisi, P., Palazzi, E., et al. 2010b, A&A, 519, A96 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  145. Mescheryakov, A., Burenin, R., Sazonov, S., et al. 2009, The Astronomer’s Telegram, 2132, 1 [NASA ADS] [Google Scholar]
  146. Molkov, S., Mowlavi, N., Goldwurm, A., et al. 2003a, The Astronomer’s Telegram, 176, 1 [NASA ADS] [Google Scholar]
  147. Molkov, S., Lutovinov, A., & Grebenev, S. 2003b, A&A, 411, L357 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  148. Molkov, S. V., Cherepashchuk, A. M., Lutovinov, A. A., et al. 2004, AstL, 30, 534 [NASA ADS] [CrossRef] [Google Scholar]
  149. Morelli, L., Masetti, N., Bassani, L., et al. 2006, The Astronomer’s Telegram, 785, 1 [NASA ADS] [Google Scholar]
  150. Negueruela, I., & Smith, D. M. 2006, The Astronomer’s Telegram, 831, 1 [NASA ADS] [Google Scholar]
  151. Negueruela, I., Smith, D. M., & Chaty, S. 2005, The Astronomer’s Telegram, 470, 1 [NASA ADS] [Google Scholar]
  152. Nespoli, E., Fabregat, J., & Mennickent, R. E. 2008, The Astronomer’s Telegram, 1396, 1 [NASA ADS] [Google Scholar]
  153. Paizis, A., Nowak, M. A., Chaty, S., et al. 2007, ApJ, 657, L109 [NASA ADS] [CrossRef] [Google Scholar]
  154. Palmer, D. M., Barthelmey, S. D., Cummings, J. R., et al. 2005, The Astronomer’s Telegram, 546, 1 [NASA ADS] [Google Scholar]
  155. Parisi, P., Masetti, N., Landi, R., et al. 2008, The Astronomer’s Telegram, 1540, 1 [NASA ADS] [Google Scholar]
  156. Patel, S. K., Kouveliotou, C., Tennant, A., et al. 2004, ApJ, 602, L45 [NASA ADS] [CrossRef] [Google Scholar]
  157. Pavlinskii, M. N., Grebenev, S. A., & Syunyaev, R. A. 1992, SvA Lett., 18, 88 [NASA ADS] [Google Scholar]
  158. Potter, S. B., Buckley, D. A. H., O’Donoghue, D., et al. 2010, MNRAS, 402, 1161 [NASA ADS] [CrossRef] [Google Scholar]
  159. Produit, N., Ballet, J., & Mowlavi, N. 2004, The Astronomer’s Telegram, 278, 1 [NASA ADS] [Google Scholar]
  160. Ratti, E. M., Bassa, C. G., Torres, M. A. P., et al. 2010, MNRAS, 408, 1866 [NASA ADS] [CrossRef] [Google Scholar]
  161. Rea, N., Testa, V., Israel, G. L., et al. 2006, The Astronomer’s Telegram, 713, 1 [NASA ADS] [Google Scholar]
  162. Reig, P., & Roche, P. 1999, MNRAS, 306, 100 [NASA ADS] [CrossRef] [Google Scholar]
  163. Reig, P., Negueruela, I., Papamastorakis, G., Manousakis, A., & Kougentakis, T. 2005, A&A, 440, 637 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  164. Renaud, M., Marandon, V., Gotthelf, E. V., et al. 2010, ApJ, 716, 663 [NASA ADS] [CrossRef] [Google Scholar]
  165. Revnivtsev, M., Chernyakova, M., Capitanio, F., et al. 2003a, The Astronomer’s Telegram, 132, 1 [NASA ADS] [Google Scholar]
  166. Revnivtsev, M. G., Sazonov, S. Y., Gilfanov, M. R., & Sunyaev, R. A. 2003b, Astron. Lett., 29, 587 [NASA ADS] [CrossRef] [Google Scholar]
  167. Revnivtsev, M., Tuerler, M., Del Santo, M., et al. 2003c, IAU Circ., 8097, 2 [NASA ADS] [Google Scholar]
  168. Revnivtsev, M. G., Sazonov, S. Y., Gilfanov M. R., & Sunyaev, R. A. 2003d, Astron. Lett., 29, 587 [NASA ADS] [CrossRef] [Google Scholar]
  169. Revnivtsev, M. G., Churazov, E. M., Sazonov, S. Yu., et al. 2004a, A&A, 425, L49 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  170. Revnivtsev, M. G., Sunyaev, R. A., Varshalovich, D. A., et al. 2004b, Astron. Lett., 30, 382 [NASA ADS] [CrossRef] [Google Scholar]
  171. Revnivtsev, M. G., Sazonov, S. Y., Molkov, S. V., et al. 2006, Astron. Lett., 32, 145 [NASA ADS] [CrossRef] [Google Scholar]
  172. Revnivtsev, M., Sunyaev, R., Lutovinov, A., & Sazonov, S. 2007, The Astronomer’s Telegram, 1253, 1 [NASA ADS] [Google Scholar]
  173. Revnivtsev, M., Lutovinov, A., Churazov, E., et al. 2008, A&A, 491, 209 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  174. Revnivtsev, M. G., Kniazev, A. Yu., Sazonov, S. Yu., et al. 2009, Astron. Lett., 35, 33 [NASA ADS] [CrossRef] [Google Scholar]
  175. Rodriguez, J., Garau, A. D., Grebenev, S., et al. 2004, The Astronomer’s Telegram, 340, 1 [NASA ADS] [Google Scholar]
  176. Rodriguez, J., Cabanac, C., Hannikainen, D. C., et al. 2005, A&A, 432, 235 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  177. Rodriguez, J., Tomsick, J. A., & Chaty, S. 2008, A&A, 482, 731 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  178. Rodriguez, J., Tomsick, J. A., & Chaty, S. 2009, A&A, 494, 417 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  179. Rodriguez, J., Tomsick, J. A., & Bodaghee, A. 2010, A&A, 517, A14 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  180. Sazonov, S., Churazov, E., Revnivtsev, M., Vikhlinin, A., & Sunyaev, R. 2005, A&A, 444, L37 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  181. Sazonov, S., Revnivtsev, M., Krivonos, R., Churazov, E., & Sunyaev, R. 2007, A&A, 462, 57 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  182. Sazonov, S., Revnivtsev, M., Burenin, R., et al. 2008, A&A, 487, 509 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  183. Sidoli, L., Paizis, A., & Mereghetti, S. 2006, A&A, 450, L9 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  184. Sguera, V., Bazzano, A., Bird, A. J., et al. 2006, ApJ, 646, 452 [NASA ADS] [CrossRef] [Google Scholar]
  185. Sguera, V., Hill, A. B., Bird, A. J., et al. 2007, A&A, 467, 249 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  186. Smith, N., & Hartigan, P. 2006, ApJ, 638, 1045 [NASA ADS] [CrossRef] [Google Scholar]
  187. Soldi, S., Brandt, S., Garau, A. D., et al. 2005, The Astronomer’s Telegram, 456, 1 [NASA ADS] [Google Scholar]
  188. Soldi, S., Walter, R., Eckert, D., et al. 2006, The Astronomer’s Telegram, 885, 1 [NASA ADS] [Google Scholar]
  189. Steeghs, D., Knigge, C., Drew, J., Unruh, Y., & Greimel, R. 2008, The Astronomer’s Telegram, 1653, 1 [NASA ADS] [Google Scholar]
  190. Sunyaev, R., Pavlinskii, M., Churazov, E., et al. 1991, SvA Lett., 17, 42 [NASA ADS] [Google Scholar]
  191. Sunyaev, R., Lutovinov, A., Molkov, S., & Deluit, S. 2003a, The Astronomer’s Telegram, 181, 1 [NASA ADS] [Google Scholar]
  192. Sunyaev, R. A., Grebenev, S. A., Lutovinov, A. A., et al. 2003b, The Astronomer’s Telegram, 190, 1 [NASA ADS] [Google Scholar]
  193. Terrier, R., Mattana, F., Djannati-Atai, A., et al. 2008, AIP Conf. Ser., 1085, 312 [NASA ADS] [CrossRef] [Google Scholar]
  194. Tomsick, J. A., Lingenfelter, R., Walter, R., et al. 2003, IAU Circ., 8076, 1 [NASA ADS] [Google Scholar]
  195. Tomsick, J. A., Lingenfelter, R., Corbel, S., Goldwurm, A., & Kaaret, P. 2004, The Astronomer’s Telegram, 224, 1 [NASA ADS] [Google Scholar]
  196. Tomsick, J. A., Chaty, S., Rodriguez, J., et al. 2006, ApJ, 647, 1309 [NASA ADS] [CrossRef] [Google Scholar]
  197. Tomsick, J. A., Rodriguez, J., Chaty, S., Walter, R., & Kaaret, P. 2008a, The Astronomer’s Telegram, 1649, 1 [NASA ADS] [Google Scholar]
  198. Tomsick, J. A., Chaty, S., Rodriguez, J., Walter, R., & Kaaret, P. 2008b, ApJ, 685, 1143 [NASA ADS] [CrossRef] [Google Scholar]
  199. Tomsick, J. A., Chaty, S., Rodriguez, J., Walter, R., & Kaaret, P. 2009, ApJ, 701, 811 [NASA ADS] [CrossRef] [Google Scholar]
  200. Torrejón, J. M., Negueruela, I., Smith, D. M., & Harrison, T. E. 2010, A&A, 510, A61 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  201. Torres, M. A. P., Steeghs, D., Garcia, M. R., et al. 2005, The Astronomer’s Telegram, 551, 1 [NASA ADS] [Google Scholar]
  202. Torres, M. A. P., Steeghs, D., Jonker, P. G., et al. 2007, The Astronomer’s Telegram, 1286, 1 [NASA ADS] [Google Scholar]
  203. Turler, M., Cadol le Bel, M., Diehl, R., et al. 2005a, The Astronomer’s Telegram, 624, 1 [NASA ADS] [CrossRef] [Google Scholar]
  204. Tueller, J., Barthelmy, S., Burrows, D., et al. 2005b, The Astronomer’s Telegram, 669, 1 [NASA ADS] [Google Scholar]
  205. Tueller, J., Baumgartner, W. H., Markwardt, C. B., et al. 2010, ApJS, 186, 378 [NASA ADS] [CrossRef] [Google Scholar]
  206. Ubertini, P., Lebrun, F., Di Cocco, G., et al. 2003, A&A, 411, L131 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  207. Ubertini, P., Bassani, L., Malizia, A., et al. 2005, ApJ, 629, L109 [NASA ADS] [CrossRef] [Google Scholar]
  208. Walter, R., Bodaghee, A., Barlow, E. J., et al. 2004, The Astronomer’s Telegram, 229, 1 [NASA ADS] [Google Scholar]
  209. Walter, R., Zurita Heras, J., Bassani, L., et al. 2006, A&A, 453, 133 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  210. Watson, M. G., Schröder, A. C., Fyfe, D., et al. 2009, A&A, 493, 339 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  211. Wijnands, R. 2006, The Astronomer’s Telegram, 972, 1 [NASA ADS] [Google Scholar]
  212. Winkler, C., Courvoisier, T. J.-L., Di Cocco, G., et al. 2003, A&A, 411, L1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  213. Winter, L. M., Mushotzky, R. F., Tueller, J., & Markwardt, C. 2008, ApJ, 674, 686 [NASA ADS] [CrossRef] [Google Scholar]
  214. Zhou, H., Wang, T., Yuan, W., et al. 2007, ApJ, 658, L13 [NASA ADS] [CrossRef] [Google Scholar]
  215. Zurita Heras, J. A., Chaty, S., & Tomsick, J. A. 2009, A&A, 502, 787 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  216. in ’t Zand, J., & Heise, J. 2004, The Astronomer’s Telegram, 362, 1 [NASA ADS] [Google Scholar]
  217. in ’t Zand, J. J. M. 2005, A&A, 441, L1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]

All Tables

Table 1

Catalog source statistics and comparison with the previous survey K07.

Table 2

The catalog of sources detected during the INTEGRAL/IBIS 7-year all-sky survey.

All Figures

thumbnail Fig. 1

The 17 − 60 keV light curves (left) and histograms of the corresponding flux distribution (right) of two sources in the catalog: persistently detected and highly variable LMXB GX 349+2, and HMXB transient 4U 1901+03. The blue dotted lines in the left hand figures represent the flux of the sources measured on a 7-year time-averaged map. The first flux bin in the right histograms contains counts from the range  [−5,5]  mCrab, and the flux measurements with error  > 5 mCrab were dropped.

Open with DEXTER
In the text
thumbnail Fig. 2

Number flux relation of extragalactic objects at  |b|  > 5° (red points) built from a nonblazar AGN sample containing 158 objects detected above 5σ. The best-fitting power law is shown by the black solid line. The blue curve represents AGN log N − log S measured by Ajello et al. (2009) with Swift/BAT.

Open with DEXTER
In the text

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.