Issue |
A&A
Volume 659, March 2022
|
|
---|---|---|
Article Number | A74 | |
Number of page(s) | 24 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/202142400 | |
Published online | 08 March 2022 |
The atmosphere and architecture of WASP-189 b probed by its CHEOPS phase curve★
1
Department of Astronomy, University of Geneva,
Chemin Pegasi 51,
1290
Versoix,
Switzerland
e-mail: adrien.deline@unige.ch
2
Physikalisches Institut, University of Bern,
Gesellsschaftstrasse 6,
3012
Bern,
Switzerland
3
Center for Space and Habitability, University of Bern,
Gesellsschaftstrasse 6,
3012
Bern,
Switzerland
4
Department of Astronomy, Stockholm University, AlbaNova University Center,
10691
Stockholm,
Sweden
5
Aix-Marseille Université, CNRS, CNES, Laboratoire d’Astrophysique de Marseille,
38 rue Frédéric Joliot-Curie,
13388
Marseille,
France
6
Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège,
Allée du 6 Août 19C,
4000
Liège,
Belgium
7
Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas,
4150-762
Porto,
Portugal
8
Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto,
Rua do Campo Alegre 687,
4169-007
Porto,
Portugal
9
Department of Physics, University of Warwick,
Gibbet Hill Road,
Coventry
CV4 7AL,
UK
10
University Observatory Munich, Ludwig Maximilian University,
Scheinerstraße 1,
Munich
81679,
Germany
11
Instituto de Astrofísica de Canarias,
38200
La Laguna,
Tenerife,
Spain
12
Departamento de Astrofísica, Universidad de La Laguna,
38206
La Laguna,
Tenerife,
Spain
13
Dipartimento di Fisica, Università degli Studi di Torino,
Via Pietro Giuria 1,
10125,
Torino,
Italy
14
INAF, Osservatorio Astronomico di Padova,
Vicolo Osservatorio 5,
35122
Padova,
Italy
15
Space Research Institute, Austrian Academy of Sciences,
Schmiedlstraße 6,
8042
Graz,
Austria
16
Centre for Exoplanet Science, SUPA School of Physics and Astronomy, University of St Andrews,
North Haugh,
St Andrews
KY16 9SS,
UK
17
Institut de Ciències de l’Espai (ICE, CSIC),
Campus UAB, Carrer de Can Magrans, s/n,
08193
Barcelona,
Spain
18
Admatis,
Kandó Kálmán út 5,
3534
Miskolc,
Hungary
19
Departamento de Astrofísica, Centro de Astrobiología (CSIC-INTA), ESAC campus,
28692
Villanueva de la Cañada,
Spain
20
Université Grenoble Alpes, CNRS, Institut de Planétologie et d’Astrophysique de Grenoble,
38000
Grenoble,
France
21
Institute of Planetary Research, German Aerospace Center (DLR),
Rutherfordstraße 2,
12489
Berlin,
Germany
22
Université de Paris, Institut de Physique du Globe de Paris, CNRS,
75005
Paris,
France
23
European Space Research and Technology Centre (ESTEC), European Space Agency (ESA),
Keplerlaan 1,
2201-AZ
Noordwijk,
The Netherlands
24
Centre for Mathematical Sciences, Lund University,
Box 118,
22100
Lund,
Sweden
25
Astrobiology Research Unit, Université de Liège,
Allée du 6 Août 19C,
4000
Liège,
Belgium
26
Leiden Observatory, University of Leiden,
PO Box 9513,
2300
RA Leiden,
The Netherlands
27
Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory,
43992
Onsala,
Sweden
28
Department of Astrophysics, University of Vienna,
Türkenschanzstraße 17,
1180
Vienna,
Austria
29
Division Technique, Institut National des Sciences de l’Univers (INSU),
CS 20330,
83507
La Seyne-sur-Mer,
France
30
Konkoly Observatory, Research Centre for Astronomy and Earth Sciences,
Konkoly-Thege Miklós út 15-17,
1121
Budapest,
Hungary
31
IMCCE, UMR8028 CNRS, Observatoire de Paris, PSL Université, Sorbonne Université,
77 avenue Denfert-Rochereau,
75014
Paris,
France
32
Institut d’astrophysique de Paris, UMR7095 CNRS, Université Pierre & Marie Curie,
98 bis boulevard Arago,
75014
Paris,
France
33
Astrophysics Group, Keele University,
Staffordshire
ST5 5BG,
UK
34
INAF, Osservatorio Astrofisico di Catania,
Via Santa Sofia 78,
95123
Catania,
Italy
35
Institute of Optical Sensor Systems, German Aerospace Center (DLR),
Rutherfordstraße 2,
12489
Berlin,
Germany
36
Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università degli Studi di Padova,
Vicolo Osservatorio 3,
35122
Padova,
Italy
37
Cavendish Laboratory,
JJ Thomson Avenue,
Cambridge
CB3 0HE,
UK
38
Department of Physics, ETH Zürich,
Wolfgang-Pauli-Strasse 27,
8093
Zürich,
Switzerland
39
Center for Astronomy and Astrophysics, Technical University Berlin,
Hardenberstraße 36,
10623
Berlin,
Germany
40
Institut für Geologische Wissenschaften, Freie Universität Berlin,
12249
Berlin,
Germany
41
Institut d’Estudis Espacials de Catalunya (IEEC),
08034
Barcelona,
Spain
42
ELTE Eötvös Loránd University, Gothard Astrophysical Observatory,
Szent Imre herceg utca 112,
9700
Szombathely,
Hungary
43
MTA-ELTE Exoplanet Research Group,
Szent Imre herceg utca 112,
9700
Szombathely,
Hungary
44
Institute of Astronomy, University of Cambridge,
Madingley Road,
Cambridge
CB3 0HA,
UK
Received:
8
October
2021
Accepted:
24
December
2021
Context. Gas giants orbiting close to hot and massive early-type stars can reach dayside temperatures that are comparable to those of the coldest stars. These ‘ultra-hot Jupiters’ have atmospheres made of ions and atomic species from molecular dissociation and feature strong day-to-night temperature gradients. Photometric observations at different orbital phases provide insights on the planet’s atmospheric properties.
Aims. We aim to analyse the photometric observations of WASP-189 acquired with the Characterising Exoplanet Satellite (CHEOPS) to derive constraints on the system architecture and the planetary atmosphere.
Methods. We implemented a light-curve model suited for an asymmetric transit shape caused by the gravity-darkened photosphere of the fast-rotating host star. We also modelled the reflective and thermal components of the planetary flux, the effect of stellar oblateness and light-travel time on transit-eclipse timings, the stellar activity, and CHEOPS systematics.
Results. From the asymmetric transit, we measure the size of the ultra-hot Jupiter WASP-189 b, Rp = 1.600−0.016+0.017 RJ, with a precision of 1%, and the true orbital obliquity of the planetary system, Ψp = 89.6 ± 1.2deg (polar orbit). We detect no significant hotspot offset from the phase curve and obtain an eclipse depth of δecl = 96.5−5.0+4.5 ppm, from which we derive an upper limit on the geometric albedo: Ag < 0.48. We also find that the eclipse depth can only be explained by thermal emission alone in the case of extremely inefficient energy redistribution. Finally, we attribute the photometric variability to the stellar rotation, either through superficial inhomogeneities or resonance couplings between the convective core and the radiative envelope.
Conclusions. Based on the derived system architecture, we predict the eclipse depth in the upcoming Transiting Exoplanet Survey Satellite (TESS) observations to be up to ~165 ppm. High-precision detection of the eclipse in both CHEOPS and TESS passbands might help disentangle reflective and thermal contributions. We also expect the right ascension of the ascending node of the orbit to precess due to the perturbations induced by the stellar quadrupole moment J2 (oblateness).
Key words: techniques: photometric / planets and satellites: atmospheres / planets and satellites: individual: WASP-189 b
Raw and detrended light curves are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/659/A74
© A. Deline et al. 2022
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.