Issue |
A&A
Volume 658, February 2022
|
|
---|---|---|
Article Number | A75 | |
Number of page(s) | 26 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/202141645 | |
Published online | 02 February 2022 |
Spi-OPS: Spitzer and CHEOPS confirm the near-polar orbit of MASCARA-1 b and reveal a hint of dayside reflection★
1
Physikalisches Institut, University of Bern,
Gesellsschaftstrasse 6,
3012
Bern,
Switzerland
e-mail: matthew.hooton@unibe.ch
2
Aix Marseille Univ, CNRS, CNES, LAM,
38 rue Frédéric Joliot-Curie,
13388
Marseille,
France
3
Center for Space and Habitability,
Gesellsschaftstrasse 6,
3012
Bern,
Switzerland
4
Institute of Planetary Research, German Aerospace Center (DLR),
Rutherfordstrasse 2,
12489
Berlin,
Germany
5
Centre for Exoplanet Science, SUPA School of Physics and Astronomy, University of St Andrews,
North Haugh,
St Andrews KY16 9SS,
UK
6
Observatoire Astronomique de l’Université de Genève,
Chemin Pegasi 51,
Versoix,
Switzerland
7
Astrophysics Group, Keele University,
Staffordshire,
ST5 5BG,
UK
8
Cavendish Laboratory,
JJ Thomson Avenue,
Cambridge
CB3 0HE,
UK
9
Department of Physics, University of Warwick,
Gibbet Hill Road,
Coventry
CV4 7AL,
UK
10
Instituto de Astrofisica de Canarias,
38200
La Laguna,
Tenerife,
Spain
11
Space Research Institute, Austrian Academy of Sciences,
Schmiedlstrasse 6,
A-8042
Graz,
Austria
12
Department of Astronomy, Stockholm University, AlbaNova University Center,
10691
Stockholm,
Sweden
13
Instituto de Astrofisica e Ciencias do Espaco, Universidade do Porto, CAUP,
Rua das Estrelas,
4150-762
Porto,
Portugal
14
Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto,
Rua do Campo Alegre,
4169-007
Porto,
Portugal
15
Department of Space, Earth and Environment, Onsala Space Observatory, Chalmers University of Technology,
439 92
Onsala,
Sweden
16
INAF, Osservatorio Astrofisico di Catania,
Via S. Sofia 78,
95123
Catania,
Italy
17
Departamento de Astrofisica, Universidad de La Laguna,
38206
La Laguna,
Tenerife,
Spain
18
Institut de Ciencies de l’Espai (ICE, CSIC),
Campus UAB, Can Magrans s/n,
08193
Bellaterra,
Spain
19
Institut d’Estudis Espacials de Catalunya (IEEC),
08034
Barcelona,
Spain
20
Admatis,
5. Kandó Kálmán Street,
3534
Miskolc,
Hungary
21
Depto. de Astrofisica, Centro de Astrobiologia (CSIC-INTA),
ESAC campus,
28692
Villanueva de la Cañada (Madrid),
Spain
22
Université Grenoble Alpes, CNRS, IPAG,
38000
Grenoble,
France
23
Université de Paris, Institut de physique du globe de Paris, CNRS,
75005
Paris,
France
24
Centre for Mathematical Sciences, Lund University,
Box 118,
22100
Lund,
Sweden
25
Astrobiology Research Unit, Université de Liège,
Allée du 6 Août 19C,
4000
Liège,
Belgium
26
Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège,
Allée du 6 Août 19C,
4000
Liège,
Belgium
27
INAF, Osservatorio Astronomico di Padova,
Vicolo dell’Osservatorio 5,
35122
Padova,
Italy
28
Leiden Observatory, University of Leiden,
PO Box 9513,
2300
RA Leiden,
The Netherlands
29
Department of Space, Earth and Environment, Onsala space observatory, Chalmers University of Technology,
439 92
Onsala,
Sweden
30
Dipartimento di Fisica, Universita degli Studi di Torino,
via Pietro Giuria 1,
10125,
Torino,
Italy
31
University of Vienna, Department of Astrophysics,
Türkenschanzstrasse 17,
1180
Vienna,
Austria
32
Science and Operations Department – Science Division (SCI-SC), Directorate of Science, European Space Agency (ESA), European Space Research and Technology Centre (ESTEC),
Keplerlaan 1,
2201-AZ
Noordwijk,
The Netherlands
33
Konkoly Observatory, Research Centre for Astronomy and Earth Sciences,
1121
Budapest,
Konkoly Thege Miklós út 15–17,
Hungary
34
ELTE Eötvös Loránd University, Institute of Physics,
Pázmány Péter sétány 1/A,
1117
Budapest,
Hungary
35
Sydney Institute for Astronomy, School of Physics A29, University of Sydney,
NSW
2006,
Australia
36
IMCCE, UMR8028 CNRS, Observatoire de Paris, PSL Univ., Sorbonne Univ.,
77 av. Denfert-Rochereau,
75014
Paris,
France
37
Institut d’astrophysique de Paris, UMR7095 CNRS, Université Pierre & Marie Curie,
98bis bvd. Arago,
75014
Paris,
France
38
Department of Astrophysics, University of Vienna,
Tuerkenschanzstrasse 17,
1180
Vienna,
Austria
39
INAF, Osservatorio Astronomico di Padova,
Vicolo dell’Osservatorio 5,
35122
Padova,
Italy
40
Institute of Optical Sensor Systems, German Aerospace Center (DLR),
Rutherfordstrasse 2,
12489
Berlin,
Germany
41
Dipartimento di Fisica e Astronomia “Galileo Galilei”, Universita degli Studi di Padova,
Vicolo dell’Osservatorio 3,
35122
Padova,
Italy
42
ESTEC, European Space Agency,
2201AZ
Noordwijk,
The Netherlands
43
Center for Astronomy and Astrophysics, Technical University Berlin,
Hardenberstrasse 36,
10623
Berlin,
Germany
44
Institut für Geologische Wissenschaften, Freie Universität Berlin,
12249
Berlin,
Germany
45
ELTE Eötvös Loránd University, Gothard Astrophysical Observatory,
9700
Szombathely,
Szent Imre h. u. 112,
Hungary
46
MTA-ELTE Exoplanet Research Group,
9700
Szombathely,
Szent Imre h. u. 112,
Hungary
47
Ingenieurbüro Ulmer,
Im Technologiepark 1,
15236
Frankfurt/Oder,
Germany
48
Institute of Astronomy, University of Cambridge,
Madingley Road,
Cambridge,
CB3 0HA,
UK
Received:
26
June
2021
Accepted:
10
September
2021
Context. The light curves of tidally locked hot Jupiters transiting fast-rotating, early-type stars are a rich source of information about both the planet and star, with full-phase coverage enabling a detailed atmospheric characterisation of the planet. Although it is possible to determine the true spin–orbit angle Ψ – a notoriously difficult parameter to measure – from any transit asymmetry resulting from gravity darkening induced by the stellar rotation, the correlations that exist between the transit parameters have led to large disagreements in published values of Ψ for some systems.
Aims. We aimed to study these phenomena in the light curves of the ultra-hot Jupiter MASCARA-1 b, which is characteristically similar to well-studied contemporaries such as KELT-9 b and WASP-33 b.
Methods. We obtained optical CHaracterising ExOPlanet Satellite (CHEOPS) transit and occultation light curves of MASCARA-1 b, and analysed them jointly with a Spitzer/IRAC 4.5 μm full-phase curve to model the asymmetric transits, occultations, and phase-dependent flux modulation. For the latter, we employed a novel physics-driven approach to jointly fit the phase modulation by generating a single 2D temperature map and integrating it over the two bandpasses as a function of phase to account for the differing planet–star flux contrasts. The reflected light component was modelled using the general ab initio solution for a semi-infinite atmosphere.
Results. When fitting the CHEOPS and Spitzer transits together, the degeneracies are greatly diminished and return results consistent with previously published Doppler tomography. Placing priors informed by the tomography achieves even better precision, allowing a determination of Ψ = 72.1−2.4+2.5 deg. From the occultations and phase variations, we derived dayside and nightside temperatures of 3062−68+66 K and 1720 ± 330 K, respectively.Our retrieval suggests that the dayside emission spectrum closely follows that of a blackbody. As the CHEOPS occultation is too deep to be attributed to blackbody flux alone, we could separately derive geometric albedo Ag = 0.171−0.068+0.066 and spherical albedo As = 0.266−0.100+0.097 from the CHEOPS data, and Bond albedoAB = 0.057−0.101+0.083 from the Spitzer phase curve.Although small, the Ag and As indicate that MASCARA-1 b is more reflective than most other ultra-hot Jupiters, where H− absorption is expected to dominate.
Conclusions. Where possible, priors informed by Doppler tomography should be used when fitting transits of fast-rotating stars, though multi-colour photometry may also unlock an accurate measurement of Ψ. Our approach to modelling the phase variations at different wavelengths provides a template for how to separate thermal emission from reflected light in spectrally resolved James Webb Space Telescope phase curve data.
Key words: techniques: photometric / planets and satellites: atmospheres / planets and satellites: physical evolution / planets and satellites: individual: MASCARA-1 b
The photometric time series data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/658/A75
© ESO 2022
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.