Issue |
A&A
Volume 657, January 2022
|
|
---|---|---|
Article Number | A52 | |
Number of page(s) | 20 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/202142196 | |
Published online | 11 January 2022 |
Detection of the tidal deformation of WASP-103b at 3 σ with CHEOPS★
1
Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP,
Rua das Estrelas,
4150-762
Porto,
Portugal
e-mail: susana.barros@astro.up.pt
2
Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto,
Rua Campo Alegre,
4169-007
Porto,
Portugal
3
IMCCE, UMR8028 CNRS, Observatoire de Paris,PSL Univ., Sorbonne Univ.,
77 av. Denfert-Rochereau,
75014
Paris,
France
4
Institute of Planetary Research, German Aerospace Center (DLR),
Rutherfordstrasse 2,
12489
Berlin,
Germany
5
Observatoire Astronomique de l’Université de Genève,
Chemin Pegasi 51,
Versoix,
Switzerland
6
Depto. de Astrofisica, Centro de Astrobiologia (CSIC-INTA), ESAC campus,
28692
Villanueva de la Cañada (Madrid),
Spain
7
Cavendish Laboratory,
JJ Thomson Avenue,
Cambridge
CB3 0HE,
UK
8
Centre for Exoplanet Science, SUPA School of Physics and Astronomy, University of St Andrews,
North Haugh,
St Andrews
KY16 9SS,
UK
9
Physikalisches Institut, University of Bern,
Gesellsschaftstrasse 6,
3012
Bern,
Switzerland
10
INAF, Osservatorio Astrofisico di Catania,
Via S. Sofia 78,
95123
Catania,
Italy
11
CFisUC, Departamento de Física, Universidade de Coimbra,
3004-516
Coimbra,
Portugal
12
Space Research Institute, Austrian Academy of Sciences,
Schmiedlstrasse 6,
8042
Graz,
Austria
13
Aix Marseille Univ, CNRS, CNES, LAM,
38 rue Frédéric Joliot-Curie,
13388
Marseille,
France
14
Center for Space and Habitability,
Gesellsschaftstrasse 6,
3012
Bern,
Switzerland
15
Astrophysics Group, Keele University,
Staffordshire
ST5 5BG,
UK
16
Department of Physics, University of Warwick,
Gibbet Hill Road,
Coventry
CV4 7AL,
UK
17
Instituto de Astrofisica de Canarias,
38200
La Laguna,
Tenerife,
Spain
18
Department of Astronomy, Stockholm University, AlbaNova University Center,
10691
Stockholm,
Sweden
19
Department of Space, Earth and Environment, Onsala Space Observatory, Chalmers University of Technology,
439 92
Onsala,
Sweden
20
Departamento de Astrofisica, Universidad de La Laguna,
38206
La Laguna,
Tenerife,
Spain
21
Institut de Ciencies de l’Espai (ICE, CSIC),
Campus UAB, Can Magrans s/n,
08193
Bellaterra,
Spain
22
Institut d’Estudis Espacials de Catalunya (IEEC),
08034
Barcelona,
Spain
23
Admatis,
5. Kandó Kálmán Street,
3534
Miskolc,
Hungary
24
Université Grenoble Alpes, CNRS, IPAG,
38000
Grenoble,
France
25
Université de Paris, Institut de physique du globe de Paris, CNRS,
75005
Paris,
France
26
Centre for Mathematical Sciences, Lund University,
Box 118,
22100
Lund,
Sweden
27
Astrobiology Research Unit, Université de Liège,
Allée du 6 Août 19C,
4000
Liège,
Belgium
28
Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège,
Allée du 6 Août 19C,
4000
Liège,
Belgium
29
INAF, Osservatorio Astronomico di Padova,
Vicolo dell’Osservatorio 5,
35122
Padova,
Italy
30
Dipartimento di Fisica e Astronomia “Galileo Galilei”, Universita degli Studi di Padova,
Vicolo dell’Osservatorio 3,
35122
Padova,
Italy
31
Leiden Observatory, University of Leiden,
PO Box 9513,
2300
RA Leiden,
The Netherlands
32
Dipartimento di Fisica, Universita degli Studi di Torino,
via Pietro Giuria 1,
10125,
Torino,
Italy
33
University of Vienna, Department of Astrophysics,
Türkenschanzstrasse 17,
1180
Vienna,
Austria
34
Science and Operations Department - Science Division (SCI-SC), Directorate of Science, European Space Agency (ESA), European Space Research and Technology Centre (ESTEC),
Keplerlaan 1,
2201-AZ
Noordwijk,
The Netherlands
35
Konkoly Observatory, Research Centre for Astronomy and Earth Sciences,
1121
Budapest,
Konkoly Thege Miklós út 15-17,
Hungary
36
Sydney Institute for Astronomy, School of Physics A29, University of Sydney,
NSW
2006,
Australia
37
Institut d’astrophysique de Paris, UMR7095 CNRS, Université Pierre & Marie Curie,
98bis blvd. Arago,
75014
Paris,
France
38
ESTEC, European Space Agency,
2201AZ,
Noordwijk,
The Netherlands
39
Center for Astronomy and Astrophysics, Technical University Berlin,
Hardenberstrasse 36,
10623
Berlin,
Germany
40
Institut für Geologische Wissenschaften, Freie Universität Berlin,
12249
Berlin,
Germany
41
ELTE Eötvös Loránd University, Gothard Astrophysical Observatory,
9700
Szombathely,
Szent Imre h. u. 112,
Hungary
42
MTA-ELTE Exoplanet Research Group,
9700
Szombathely,
Szent Imre h. u. 112,
Hungary
43
Ingenieurbüro Ulmer,
Im Technologiepark 1,
15236
Frankfurt/Oder,
Germany
44
Institute of Astronomy, University of Cambridge,
Madingley Road,
Cambridge,
CB3 0HA,
UK
Received:
9
September
2021
Accepted:
15
November
2021
Context. Ultra-short period planets undergo strong tidal interactions with their host star which lead to planet deformation and orbital tidal decay.
Aims. WASP-103b is the exoplanet with the highest expected deformation signature in its transit light curve and one of the shortest expected spiral-in times. Measuring the tidal deformation of the planet would allow us to estimate the second degree fluid Love number and gain insight into the planet’s internal structure. Moreover, measuring the tidal decay timescale would allow us to estimate the stellar tidal quality factor, which is key to constraining stellar physics.
Methods. We obtained 12 transit light curves of WASP-103b with the CHaracterising ExOplanet Satellite (CHEOPS) to estimate the tidal deformation and tidal decay of this extreme system. We modelled the high-precision CHEOPS transit light curves together with systematic instrumental noise using multi-dimensional Gaussian process regression informed by a set of instrumental parameters. To model the tidal deformation, we used a parametrisation model which allowed us to determine the second degree fluid Love number of the planet. We combined our light curves with previously observed transits of WASP-103b with the Hubble Space Telescope (HST) and Spitzer to increase the signal-to-noise of the light curve and better distinguish the minute signal expected from the planetary deformation.
Results. We estimate the radial Love number of WASP-103b to be hf = 1.59−0.53+0.45. This is the first time that the tidal deformation is directly detected (at 3 σ) from the transit light curve of an exoplanet. Combining the transit times derived from CHEOPS, HST, and Spitzer light curves with the other transit times available in the literature, we find no significant orbital period variation for WASP-103b. However, the data show a hint of an orbital period increase instead of a decrease, as is expected for tidal decay. This could be either due to a visual companion star if this star is bound, the Applegate effect, or a statistical artefact.
Conclusions. The estimated Love number of WASP-103b is similar to Jupiter’s. This will allow us to constrain the internal structure and composition of WASP-103b, which could provide clues on the inflation of hot Jupiters. Future observations with James Webb Space Telescope can better constrain the radial Love number of WASP-103b due to their high signal-to-noise and the smaller signature of limb darkening in the infrared. A longer time baseline is needed to constrain the tidal decay in this system.
Key words: planets and satellites: fundamental parameters / planets and satellites: composition / planets and satellites: interiors / planets and satellites: individual: WASP-103b / techniques: photometric / time
The transit light curves are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/657/A52.
© ESO 2022
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.