Issue |
A&A
Volume 643, November 2020
|
|
---|---|---|
Article Number | A94 | |
Number of page(s) | 10 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/202038677 | |
Published online | 09 November 2020 |
The hot dayside and asymmetric transit of WASP-189 b seen by CHEOPS★
1
Observatoire de Genève, Université de Genève,
Chemin des maillettes 51,
1290
Sauverny, Switzerland
e-mail: Monika.Lendl@unige.ch
2
Space Research Institute, Austrian Academy of Sciences,
Schmiedlstr. 6,
8042
Graz, Austria
3
Institute of Planetary Research,
German Aerospace Center (DLR),
Rutherfordstr. 2,
12489,
Berlin, Germany
4
Center for Space and Habitability,
Gesellsschaftstr. 6,
3012
Bern,
Switzerland
5
Laboratoire d’Astrophysique de Marseille, Univ. de Provence, UMR6110 CNRS,
38 r. F. Joliot Curie,
13388
Marseille, France
6
Physikalisches Institut, University of Bern,
Gesellschaftsstr. 6,
3012
Bern,
Switzerland
7
Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège,
Allée du 6 Août 17,
4000
Liège,
Belgium
8
Astrophysics Group, Cavendish Laboratory, J.J. Thomson Avenue,
Cambridge
CB3 0HE,
UK
9
Astrophysics Group, Keele University,
Staffordshire
ST5 5BG,
UK
10
Department of Astronomy, Stockholm University, AlbaNova University Center,
10691
Stockholm,
Sweden
11
School of Physics and Astronomy,
Physical Science Building,
North Haugh, St Andrews,
UK
12
Astrobiology Research Unit, Université de Liège, Allée du 6 Août 19C,
4000
Liège,
Belgium
13
Center for Astronomy and Astrophysics, Technical University Berlin,
Hardenbergstr. 36,
10623
Berlin,
Germany
14
Instituto de Astrofísica de Canarias (IAC),
38200
La Laguna,
Tenerife,
Spain
15
Deptartamento de Astrofísica, Universidad de La Laguna (ULL),
38206 La Laguna,
Tenerife,
Spain
16
ESTEC, European Space Agency,
Keplerlaan 1,
2201
AZ Noordwijk,
The Netherlands
17
Admatis,
Miskolc,
Hungary
18
Depto. de Astrofísica, Centro de Astrobiología (CSIC-INTA), ESAC campus,
28692
Villanueva de la Cãda (Madrid),
Spain
19
Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto,
CAUP, Rua das Estrelas,
4150-762
Porto,
Portugal
20
Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto,
Rua do Campo Alegre,
4169-007
Porto,
Portugal
21
INAF, Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5,
35122
Padova,
Italy
22
Université Grenoble Alpes, CNRS, IPAG,
38000
Grenoble,
France
23
Institut de Physique du Globe de Paris (IPGP),
1 rue Jussieu,
75005
Paris,
France
24
Lund Observatory, Department of Astronomy & Theoretical Physics, Lund University,
Box 43,
Lund
22100,
Sweden
25
Leiden Observatory, University of Leiden,
PO Box 9513,
2300 RA
Leiden,
The Netherlands
26
Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory,
439 92
Onsala,
Sweden
27
INAF, Osservatorio Astrofisico di Torino,
via Osservatorio 20,
10025
Pino Torinese,
Italy
28
Division Technique INSU,
BP 330,
83507
La Seyne cedex,
France
29
Konkoly Observatory, Research Centre for Astronomy and Earth Sciences,
1121
Budapest,
Konkoly Thege Miklós út 15-17,
Hungary
30
Institut d’astrophysique de Paris, UMR7095 CNRS, Université Pierre & Marie Curie,
98bis blvd. Arago,
75014
Paris,
France
31
University of Vienna, Department of Astrophysics,
Türkenschanzstr. 17,
1180
Vienna,
Austria
32
IMCCE, UMR8028 CNRS, Observatoire de Paris, PSL Univ., Sorbonne Univ.,
77 av. Denfert-Rochereau,
75014
Paris,
France
33
INAF, Osservatorio Astrofisico di Catania,
Via S. Sofia 78,
95123
Catania,
Italy
34
Institute of Optical Sensor Systems, German Aerospace Center (DLR),
Rutherfordstr. 2,
12489
Berlin,
Germany
35
Dipartimento di Fisica e Astronomia “Galileo Galilei”, Universita’ degli Studi di Padova,
Vicolo dell’Osservatorio 3,
35122
Padova,
Italy
36
Department of Physics, University of Warwick,
Gibbet Hill Road,
Coventry
CV4 7AL,
UK
37
Institut für Geologische Wissenschaften, Freie Universität Berlin,
12249
Berlin,
Germany
38
Institut de Ciències de l’Espai (ICE, CSIC),
Campus UAB, C/CanMagrans s/n,
08193
Bellaterra,
Spain
39
Institut d’Estudis Espacials de Catalunya (IEEC),
Gran Capità 2-4,
08034
Barcelona,
Spain
40
ELTE Eötvös Loránd University, Gothard Astrophysical Observatory,
Szombathely,
Hungary
41
MTA-ELTE Exoplanet Research Group,
9700
Szombathely,
Szent Imre h. u. 112,
Hungary
42
Institute of Astronomy, University of Cambridge,
Madingley Road,
Cambridge
CB3 0HA,
UK
Received:
16
June
2020
Accepted:
17
September
2020
The CHEOPS space mission dedicated to exoplanet follow-up was launched in December 2019, equipped with the capacity to perform photometric measurements at the 20 ppm level. As CHEOPS carries out its observations in a broad optical passband, it can provide insights into the reflected light from exoplanets and constrain the short-wavelength thermal emission for the hottest of planets by observing occultations and phase curves. Here, we report the first CHEOPS observation of an occultation, namely, that of the hot Jupiter WASP-189 b, a MP ≈ 2MJ planet orbiting an A-type star. We detected the occultation of WASP-189 b at high significance in individual measurements and derived an occultation depth of dF = 87.9 ± 4.3 ppm based on four occultations. We compared these measurements to model predictions and we find that they are consistent with an unreflective atmosphere heated to a temperature of 3435 ± 27 K, when assuming inefficient heat redistribution. Furthermore, we present two transits of WASP-189 b observed by CHEOPS. These transits have an asymmetric shape that we attribute to gravity darkening of the host star caused by its high rotation rate. We used these measurements to refine the planetary parameters, finding a ~25% deeper transit compared to the discovery paper and updating the radius of WASP-189 b to 1.619 ± 0.021RJ. We further measured the projected orbital obliquity to be λ = 86.4−4.4+2.9°, a value that is in good agreement with a previous measurement from spectroscopic observations, and derived a true obliquity of Ψ = 85.4 ± 4.3°. Finally, we provide reference values for the photometric precision attained by the CHEOPS satellite: for the V = 6.6 mag star, and using a 1-h binning, we obtain a residual RMS between 10 and 17 ppm on the individual light curves, and 5.7 ppm when combining the four visits.
Key words: techniques: photometric / planets and satellites: atmospheres / planets and satellites: individual: WASP-189 b
The photometric time series data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/643/A94
© ESO 2020
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.