Open Access
Issue
A&A
Volume 699, July 2025
Article Number A327
Number of page(s) 20
Section Cosmology (including clusters of galaxies)
DOI https://doi.org/10.1051/0004-6361/202452410
Published online 23 July 2025
  1. Abadi, M., Agarwal, A., Barham, P., et al. 2016, arXiv e-prints [arXiv:1603.04467] [Google Scholar]
  2. Aihara, H., Arimoto, N., Armstrong, R., et al. 2017, PASJ, 70, S4 [NASA ADS] [Google Scholar]
  3. Ajani, V., Peel, A., Pettorino, V., et al. 2020, Phys. Rev. D, 102, 103531 [Google Scholar]
  4. Akhmetzhanova, A., Mishra-Sharma, S., & Dvorkin, C. 2024, MNRAS, 527, 7459 [Google Scholar]
  5. Alsing, J., Heavens, A., Jaffe, A. H., et al. 2016, MNRAS, 455, 4452 [Google Scholar]
  6. Alsing, J., Heavens, A., & Jaffe, A. H. 2017, MNRAS, 466, 3272 [Google Scholar]
  7. Barber, D., & Agakov, F. 2003, in Advances in Neural Information Processing Systems, eds. S. Thrun, L. Saul, & B. Schölkopf (MIT Press), 16 [Google Scholar]
  8. Bayer, A. E., Seljak, U., & Modi, C. 2023, arXiv e-prints [arXiv:2307.09504] [Google Scholar]
  9. Beaumont, M. A., Zhang, W., & Balding, D. J. 2002, Genetics, 162, 2025 [Google Scholar]
  10. Betancourt, M. 2018, arXiv e-prints [arXiv:1701.02434] [Google Scholar]
  11. Bingham, E., Chen, J. P., Jankowiak, M., et al. 2019, J. Mach. Learn. Res., 20, 28:1 [Google Scholar]
  12. Blum, M. G. B., & François, O. 2009, Stat. Comput., 20, 63 [Google Scholar]
  13. Böhm, V., Hilbert, S., Greiner, M., & Enßlin, T. A. 2017, Phys. Rev. D, 96, 123510 [CrossRef] [Google Scholar]
  14. Boruah, S. S., Fiedorowicz, P., & Rozo, E. 2024, Phys. Rev. D, submitted [arXiv:2403.05484] [Google Scholar]
  15. Bradbury, J., Frostig, R., Hawkins, P., et al. 2018, JAX: composable transformations of Python+NumPy programs, http://github.com/google/jax [Google Scholar]
  16. Brehmer, J., Louppe, G., Pavez, J., & Cranmer, K. 2020, PNAS, 117, 5242 [Google Scholar]
  17. Campagne, J. -E., Lanusse, F., Zuntz, J., et al. 2023, Open J. Astrophys., 6 [Google Scholar]
  18. Charnock, T., Lavaux, G., & Wandelt, B. D. 2018, Phys. Rev. D, 97, 083004 [NASA ADS] [CrossRef] [Google Scholar]
  19. Cheng, S., Ting, Y. -S., Ménard, B., & Bruna, J. 2020, MNRAS, 499, 5902 [Google Scholar]
  20. Clerkin, L., Kirk, D., Manera, M., et al. 2017, MNRAS, 466, 1444 [NASA ADS] [CrossRef] [Google Scholar]
  21. Cranmer, K., Pavez, J., & Louppe, G. 2015, arXiv e-prints [arXiv:1506.02169] [Google Scholar]
  22. Cranmer, K., Brehmer, J., & Louppe, G. 2020, PNAS, 117, 30055 [NASA ADS] [CrossRef] [Google Scholar]
  23. Dai, B., & Seljak, U. 2024, PNAS, 121, e2309624121 [Google Scholar]
  24. Dax, M., Wildberger, J., Buchholz, S., et al. 2023, arXiv e-prints [arXiv:2305.17161] [Google Scholar]
  25. de Jong, J. T. A., Kleijn, G. A. V., Kuijken, K. H., & Valentijn, E. A. 2012, Exp. Astron., 35, 25 [Google Scholar]
  26. DeepMind, Babuschkin, I., Baumli, K., et al. 2020, The DeepMind JAX Ecosystem, http://github.com/google-deepmind [Google Scholar]
  27. Deistler, M., Goncalves, P. J., & Macke, J. H. 2022, Adv. Neural Inf. Process. Syst., 35, 23135 [Google Scholar]
  28. Dillon, J. V., Langmore, I., Tran, D., et al. 2017, arXiv e-prints [arXiv:1711.10604] [Google Scholar]
  29. Dinh, L., Sohl-Dickstein, J., & Bengio, S. 2017, arXiv e-prints [arXiv:1605.08803] [Google Scholar]
  30. Durkan, C., Murray, I., & Papamakarios, G. 2020, arXiv e-prints [arXiv:2002.03712] [Google Scholar]
  31. Erben, T., Hildebrandt, H., Miller, L., et al. 2013, MNRAS, 433, 2545 [Google Scholar]
  32. Flaugher, B. 2005, Int. J. Mod. Phys. A, 20, 3121 [Google Scholar]
  33. Fluri, J., Kacprzak, T., Refregier, A., et al. 2018, Phys. Rev. D, 98, 123518 [NASA ADS] [CrossRef] [Google Scholar]
  34. Fluri, J., Kacprzak, T., Lucchi, A., et al. 2022, Phys. Rev. D, 105, 083518 [NASA ADS] [CrossRef] [Google Scholar]
  35. Friedrich, O., Uhlemann, C., Villaescusa-Navarro, F., et al. 2020, MNRAS, 498, 464 [NASA ADS] [CrossRef] [Google Scholar]
  36. Fu, L., Kilbinger, M., Erben, T., et al. 2014, MNRAS, 441, 2725 [Google Scholar]
  37. Glöckler, M., Deistler, M., & Macke, J. H. 2022, arXiv e-prints [arXiv:2203.04176] [Google Scholar]
  38. Greenberg, D. S., Nonnenmacher, M., & Macke, J. H. 2019, arXiv e-prints [arXiv:1905.07488] [Google Scholar]
  39. Gupta, A., Matilla, J. M. Z., Hsu, D., et al. 2018, Phys. Rev. D, 97, 103515 [NASA ADS] [CrossRef] [Google Scholar]
  40. Halder, A., Friedrich, O., Seitz, S., & Varga, T. N. 2021, MNRAS, 506, 2780 [CrossRef] [Google Scholar]
  41. Harnois-Déraps, J., Martinet, N., & Reischke, R. 2021, MNRAS, 509, 3868 [CrossRef] [Google Scholar]
  42. Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Nature, 585, 357 [NASA ADS] [CrossRef] [Google Scholar]
  43. He, K., Zhang, X., Ren, S., & Sun, J. 2016, in Proceedings of the IEEE conference on computer vision and pattern recognition, 770 [Google Scholar]
  44. Hennigan, T., Cai, T., Norman, T., Martens, L., & Babuschkin, I. 2020, Haiku: Sonnet for JAX http://github.com/deepmind/dm-haiku [Google Scholar]
  45. Hermans, J., Begy, V., & Louppe, G. 2020, in International conference on machine learning (PMLR), 4239 [Google Scholar]
  46. Hoffman, M. D., Gelman, A., et al. 2014, J. Mach. Learn. Res., 15, 1593 [Google Scholar]
  47. Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90 [NASA ADS] [CrossRef] [Google Scholar]
  48. Ivezić, Ž., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111 [Google Scholar]
  49. Izbicki, R., Lee, A. B., & Schafer, C. M. 2014, arXiv e-prints [arXiv:1404.7063] [Google Scholar]
  50. Jeffrey, N., Alsing, J., & Lanusse, F. 2021, MNRAS, 501, 954 [Google Scholar]
  51. Jeffrey, N., Whiteway, L., Gatti, M., et al. 2024, MNRAS, 536, 1303 [NASA ADS] [CrossRef] [Google Scholar]
  52. Junzhe Zhou, A., Li, X., Dodelson, S., & Mandelbaum, R. 2024, Phys. Rev. D, 110, 023539 [Google Scholar]
  53. Kacprzak, T., Kirk, D., Friedrich, O., et al. 2016, MNRAS, 463, 3653 [Google Scholar]
  54. Kaiser, N., & Squires, G. 1993, ApJ, 404, 441 [Google Scholar]
  55. Kilbinger, M. 2015, Rep. Progr. Phys., 78, 086901 [Google Scholar]
  56. Köhler, J., Krämer, A., & Noé, F. 2021, Adv. Neural Inf. Process. Syst., 34, 2796 [Google Scholar]
  57. Lanzieri, D., Zeghal, J., Lucas Makinen, T., et al. 2025, A&A, 697, A162 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  58. Laureijs, R., Amiaux, J., Arduini, S., et al. 2011, arXiv e-prints [arXiv:1110.3193] [Google Scholar]
  59. Lemos, P., Coogan, A., Hezaveh, Y., & Perreault-Levasseur, L. 2023, in International Conference on Machine Learning (PMLR), 19256 [Google Scholar]
  60. Lewis, A. 2019, arXiv e-prints [arXiv:1910.13970] [Google Scholar]
  61. Lin, C. -A., & Kilbinger, M. 2015, A&A, 583, A70 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  62. Lin, K., vonwietersheim Kramsta, M., Joachimi, B., & Feeney, S. 2023, MNRAS, 524, 6167 [Google Scholar]
  63. Liu, J., Petri, A., Haiman, Z., et al. 2015a, Phys. Rev. D, 91, 063507 [Google Scholar]
  64. Liu, X., Pan, C., Li, R., et al. 2015b, MNRAS, 450, 2888 [Google Scholar]
  65. Lopez-Paz, D., & Oquab, M. 2018, arXiv e-prints [arXiv:1610.06545] [Google Scholar]
  66. Lueckmann, J. M., Goncalves, P. J., Bassetto, G., et al. 2017, arXiv e-prints [arXiv:1711.01861] [Google Scholar]
  67. Lueckmann, J. -M., Bassetto, G., Karaletsos, T., & Macke, J. H. 2018, PMLR, 96, 1 [Google Scholar]
  68. Lueckmann, J. M., Boelts, J., Greenberg, D., Goncalves, P., & Macke, J. 2021, in Proceedings of the 24th International Conference on Artificial Intelligence and Statistics, eds. A. Banerjee, & K. Fukumizu (PMLR), Proceedings of Machine Learning Research, 130, 343 [Google Scholar]
  69. Mandelbaum, R., Eifler, T., Hložek, R., et al. 2018, arXiv e-prints [arXiv:1809.01669] [Google Scholar]
  70. Martinet, N., Schneider, P., Hildebrandt, H., et al. 2018, MNRAS, 474, 712 [Google Scholar]
  71. Millea, M., & Seljak, U. 2022, Phys. Rev. D, 105, 103010 [Google Scholar]
  72. Miller, B. K., Weniger, C., & Forré, P. 2022, Adv. Neural Inf. Process. Syst., 35, 3262 [Google Scholar]
  73. Neal, R. M. 2011, Handbook of Markov Chain Monte Carlo, 2, 2 [Google Scholar]
  74. Papamakarios, G., & Murray, I. 2018, arXiv e-prints [arXiv:1605.06376] [Google Scholar]
  75. Papamakarios, G., Pavlakou, T., & Murray, I. 2017, Adv. Neural Inf. Process. Syst., 30 [Google Scholar]
  76. Papamakarios, G., Sterratt, D. C., & Murray, I. 2018, arXiv e-prints [arXiv:1805.07226] [Google Scholar]
  77. Parzen, E. 1962, Ann. Math. Stat., 33, 1065 [Google Scholar]
  78. Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, J. Mach. Learn. Res., 12, 2825 [Google Scholar]
  79. Peel, A., Lin, C. -A., Lanusse, F., et al. 2017, A&A, 599, A79 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  80. Phan, D., Pradhan, N., & Jankowiak, M. 2019, arXiv e-prints [arXiv:1912.11554] [Google Scholar]
  81. Porqueres, N., Heavens, A., Mortlock, D., & Lavaux, G. 2021, MNRAS, 502, 3035 [NASA ADS] [CrossRef] [Google Scholar]
  82. Porqueres, N., Heavens, A., Mortlock, D., & Lavaux, G. 2022, MNRAS, 509, 3194 [Google Scholar]
  83. Porqueres, N., Heavens, A., Mortlock, D., Lavaux, G., & Makinen, T. L. 2023, arXiv e-prints [arXiv:2304.04785] [Google Scholar]
  84. Remy, B. 2023, PhD Thesis, Université Paris-Saclay, France [Google Scholar]
  85. Rezende, D., & Mohamed, S. 2015, in International conference on machine learning (PMLR), 1530 [Google Scholar]
  86. Ribli, D., Pataki, B. Á., Zorrilla Matilla, J. M., et al. 2019, MNRAS, 490, 1843 [CrossRef] [Google Scholar]
  87. Rizzato, M., Benabed, K., Bernardeau, F., & Lacasa, F. 2019, MNRAS, 490, 4688 [NASA ADS] [CrossRef] [Google Scholar]
  88. Robnik, J., De Luca, G. B., Silverstein, E., & Seljak, U. 2023, JMLR, 24, 1 [Google Scholar]
  89. Rubin, D. B. 1984, Ann. Stat., 12, 1151 [CrossRef] [Google Scholar]
  90. Schneider, M. D., Hogg, D. W., Marshall, P. J., et al. 2015, ApJ, 807, 87 [NASA ADS] [CrossRef] [Google Scholar]
  91. Semboloni, E., Schrabback, T., van Waerbeke, L., et al. 2011, MNRAS, 410, 143 [Google Scholar]
  92. Shan, H., Liu, X., Hildebrandt, H., et al. 2018, MNRAS, 474, 1116 [Google Scholar]
  93. Sharrock, L., Simons, J., Liu, S., & Beaumont, M. 2022, arXiv e-prints [arXiv:2210.04872] [Google Scholar]
  94. Sisson, S. A., Fan, Y., & Beaumont, M. A. 2018, arXiv e-prints [arXiv:1802.09720] [Google Scholar]
  95. Smail, I., Hogg, D. W., Yan, L., & Cohen, J. G. 1995, ApJ, 449, L105 [Google Scholar]
  96. Spergel, D., Gehrels, N., Baltay, C., et al. 2015, arXiv e-prints [arXiv:1503.03757] [Google Scholar]
  97. Takada, M., & Jain, B. 2004, MNRAS, 348, 897 [Google Scholar]
  98. Tejero-Cantero, A., Boelts, J., Deistler, M., et al. 2020, J. Open Source Softw., 5, 2505 [NASA ADS] [CrossRef] [Google Scholar]
  99. Thomas, O., Dutta, R., Corander, J., Kaski, S., & Gutmann, M. U. 2016, arXiv e-prints [arXiv:1611.10242] [Google Scholar]
  100. von Wietersheim-Kramsta, M., Lin, K., Tessore, N., et al. 2025, A&A, 694, A223 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  101. Wiqvist, S., Frellsen, J., & Picchini, U. 2021, arXiv e-prints [arXiv:2102.06522] [Google Scholar]
  102. Wood, S. N. 2010, Nature, 466, 1102 [Google Scholar]
  103. Xavier, H. S., Abdalla, F. B., & Joachimi, B. 2016, MNRAS, 459, 3693 [NASA ADS] [CrossRef] [Google Scholar]
  104. Zeghal, J., Lanusse, F., Boucaud, A., Remy, B., & Aubourg, E. 2022, arXiv e-prints [arXiv:2207.05636] [Google Scholar]
  105. Zhou, A. J., Li, X., Dodelson, S., & Mandelbaum, R. 2024, Phys. Rev. D, 110, 023539 [Google Scholar]
  106. Zürcher, D., Fluri, J., Sgier, R., et al. 2022, MNRAS, 511, 2075 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.