Open Access
Issue
A&A
Volume 694, February 2025
Article Number A326
Number of page(s) 9
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/202451786
Published online 25 February 2025
  1. Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2009, ApJS, 182, 543 [Google Scholar]
  2. Abdurro’uf, Accetta, K., Aerts, C., et al. 2022, ApJS, 259, 35 [NASA ADS] [CrossRef] [Google Scholar]
  3. Bailer-Jones, C. A. L., Irwin, M., & von Hippel, T. 1998, MNRAS, 298, 361 [NASA ADS] [CrossRef] [Google Scholar]
  4. Barbara, N. H., Bedding, T. R., Fulcher, B. D., Murphy, S. J., & Van Reeth, T. 2022, MNRAS, 514, 2793 [NASA ADS] [CrossRef] [Google Scholar]
  5. Baron, D., & Poznanski, D. 2017, MNRAS, 465, 4530 [NASA ADS] [CrossRef] [Google Scholar]
  6. Bengio, Y., Courville, A., & Vincent, P. 2013, IEEE Trans. Pattern Anal. Mach. Intell., 35, 1798 [CrossRef] [Google Scholar]
  7. Bishop, C. M. 2006, Pattern Recognition and Machine Learning (Springer) [Google Scholar]
  8. Buder, S., Sharma, S., Kos, J., et al. 2021, MNRAS, 506, 150 [NASA ADS] [CrossRef] [Google Scholar]
  9. Chen, X., Duan, Y., Houthooft, R., et al. 2016, arXiv e-prints [arXiv:1606.03657] [Google Scholar]
  10. Cheung, B., Livezey, J. A., Bansal, A. K., & Olshausen, B. A. 2015, arXiv eprints [arXiv:1412.6583] [Google Scholar]
  11. Cover, T. M., & Joy, T. J. A. 2006, Elements of Information Theory, 2nd edn. (Hoboken, New Jersey: John Wiley & Sons, Inc.) [Google Scholar]
  12. Dafonte, C., Garabato, D., Alvarez, M. A., & Manteiga, M. 2018, Sensors, 18, 1418 [Google Scholar]
  13. Delchambre, L., Bailer-Jones, C. A. L., Bellas-Velidis, I., et al. 2023, A&A, 674, A31 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  14. de Mijolla, D., & Ness, M. K. 2022, ApJ, 926, 193 [NASA ADS] [CrossRef] [Google Scholar]
  15. de Mijolla, D., Ness, M. K., Viti, S., & Wheeler, A. J. 2021, ApJ, 913, 12 [NASA ADS] [CrossRef] [Google Scholar]
  16. Gaia Collaboration (Prusti, T., et al.) 2016, A&A, 595, A1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  17. García Pérez, A. E., Allende Prieto, C., Holtzman, J. A., et al. 2016, AJ, 151, 144 [Google Scholar]
  18. Garvin, E. O., Bonse, M. J., Hayoz, J., et al. 2024, A&A, 689, A143 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  19. Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., et al. 2014, arXiv e-prints [arXiv:1406.2661] [Google Scholar]
  20. Holtzman, J. A., Hasselquist, S., Shetrone, M., et al. 2018, AJ, 156, 125 [Google Scholar]
  21. Hughes, A. C. N., Bailer-Jones, C. A. L., & Jamal, S. 2022, A&A, 668, A99 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  22. Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. 2017, Behav. Brain Sci., 40, e253 [CrossRef] [Google Scholar]
  23. Lample, G., Zeghidour, N., Usunier, N., et al. 2018, arXiv e-prints [arXiv:1706.00409] [Google Scholar]
  24. Majewski, S. R., Schiavon, R. P., Frinchaboy, P. M., et al. 2017, AJ, 154, 94 [NASA ADS] [CrossRef] [Google Scholar]
  25. Mathieu, M., Zhao, J., Sprechmann, P., Ramesh, A., & LeCun, Y. 2016, arXiv e-prints [arXiv:1611.03383] [Google Scholar]
  26. Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, J. Mach. Learn. Res., 12, 2825 [Google Scholar]
  27. Price-Jones, N., & Bovy, J. 2019, MNRAS, 487, 871 [NASA ADS] [CrossRef] [Google Scholar]
  28. Recio-Blanco, A., de Laverny, P., Palicio, P. A., et al. 2023, A&A, 674, A29 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  29. Re Fiorentin, P., Bailer-Jones, C. A. L., Lee, Y. S., et al. 2007, A&A, 467, 1373 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  30. Rifai, S., Bengio, Y., Courville, A., Vincent, P., & Mirza, M. 2012, in Computer Vision–ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7–13, 2012, Proceedings, Part VI 12 (Springer), 808 [CrossRef] [Google Scholar]
  31. Santoveña, R., Dafonte, C., & Manteiga, M. 2024, arXiv e-prints [arXiv:2411.05960] [Google Scholar]
  32. Shallue, C. J., & Vanderburg, A. 2018, AJ, 155, 94 [NASA ADS] [CrossRef] [Google Scholar]
  33. Szabó, A., Hu, Q., Portenier, T., Zwicker, M., & Favaro, P. 2017, arXiv e-prints [arXiv:1711.02245] [Google Scholar]
  34. Tardugno Poleo, V., Eisner, N., & Hogg, D. W. 2024, AJ, 168, 100 [CrossRef] [Google Scholar]
  35. van der Maaten, L., & Hinton, G. 2008, J. Mach. Learn. Res., 9, 2579 [Google Scholar]
  36. Wang, X., Chen, H., Tang, S., Wu, Z., & Zhu, W. 2024, IEEE Trans. Pattern Anal. Mach. Intell., 1 [Google Scholar]
  37. Wilson, J. C., Hearty, F. R., Skrutskie, M. F., et al. 2019, PASP, 131, 055001 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.