Issue |
A&A
Volume 674, June 2023
Gaia Data Release 3
|
|
---|---|---|
Article Number | A29 | |
Number of page(s) | 43 | |
Section | Catalogs and data | |
DOI | https://doi.org/10.1051/0004-6361/202243750 | |
Published online | 16 June 2023 |
Gaia Data Release 3
Analysis of RVS spectra using the General Stellar Parametriser from spectroscopy
1
Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Nice, France
2
CIGUS CITIC – Department of Computer Science and Information Technologies, University of A Coruña, Campus de Elviña s/n, A Coruña, 15071
Spain
3
CIGUS CITIC, Department of Nautical Sciences and Marine Engineering, University of A Coruña, Paseo de Ronda 51, 15071 A Coruña, Spain
4
Royal Observatory of Belgium, 3 Avenue circulaire, 1180 Brussels, Belgium
5
Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey, RH5 6NT
UK
6
CNES Centre Spatial de Toulouse, 18 Avenue Edouard Belin, 31401 Toulouse Cedex 9, France
7
ATG Europe for European Space Agency (ESA), Camino bajo del Castillo, s/n, Urbanizacion Villafranca del Castillo, Villanueva de la Cañada, 28692 Madrid, Spain
8
Max Planck Institute for Astronomy, Knigstuhl 17, 69117 Heidelberg, Germany
9
National Observatory of Athens, I. Metaxa and Vas. Pavlou, Palaia Penteli, 15236 Athens, Greece
10
Laboratoire d’astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, allée Geoffroy Saint-Hilaire, 33615 Pessac, France
11
INAF – Osservatorio Astrofisico di Catania, Via S. Sofia 78, 95123 Catania, Italy
12
Telespazio for CNES Centre Spatial de Toulouse, 18 Avenue Edouard Belin, 31401 Toulouse Cedex 9, France
13
Dpto. de Matemática Aplicada y Ciencias de la Computación, Univ. de Cantabria, ETS Ingenieros de Caminos, Canales y Puertos, Avda. de los Castros s/n, 39005 Santander, Spain
14
GEPI, Observatoire de Paris, Université PSL, CNRS, 5 place Jules Janssen, 92190 Meudon, France
15
Centre for Astrophysics Research, University of Hertfordshire, College Lane, AL10 9AB Hatfield, UK
16
INAF – Osservatorio Astrofisico di Torino, Via Osservatorio 20, 10025 Pino Torinese (TO), Italy
17
Institut d’Astrophysique et de Géophysique, Université de Liège, 19c, Allée du 6 Août, 4000 Liège, Belgium
18
Theoretical Astrophysics, Division of Astronomy and Space Physics, Department of Physics and Astronomy, Uppsala University, Box 516 751 20 Uppsala, Sweden
19
European Space Agency (ESA), European Space Astronomy Centre (ESAC), Camino bajo del Castillo, s/n, Urbanizacion Villafranca del Castillo, Villanueva de la Cañada, 28692 Madrid, Spain
20
Data Science and Big Data Lab, Pablo de Olavide University, 41013 Seville, Spain
21
Department of Astrophysics, Astronomy and Mechanics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, 15783 Athens, Greece
22
Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via S. Sofia 64, 95123 Catania, Italy
23
LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, 92190 Meudon, France
24
Université Rennes, CNRS, IPR (Institut de Physique de Rennes) – UMR 6251, 35000 Rennes, France
25
Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen Ø, Denmark
26
DXC Technology, Retortvej 8, 2500 Valby, Denmark
27
Aurora Technology for European Space Agency (ESA), Camino bajo del Castillo, s/n, Urbanizacion Villafranca del Castillo, Villanueva de la Cañada, 28692 Madrid, Spain
28
IPAC, Mail Code 100-22, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125
USA
29
IRAP, Université de Toulouse, CNRS, UPS, CNES, 9 Av. colonel Roche, BP 44346, 31028 Toulouse Cedex 4, France
30
Thales Services for CNES Centre Spatial de Toulouse, 18 Avenue Edouard Belin, 31401 Toulouse Cedex 9, France
31
Dpto. de Inteligencia Artificial, UNED, c/ Juan del Rosal 16, 28040 Madrid, Spain
32
INAF – Osservatorio astronomico di Padova, Vicolo Osservatorio 5, 35122 Padova, Italy
33
Institute of Global Health, University of Geneva, Geneva, Switzerland
34
Applied Physics Department, Universidade de Vigo, 36310 Vigo, Spain
35
Sorbonne Université, CNRS, UMR7095, Institut d’Astrophysique de Paris, 98bis bd. Arago, 75014 Paris, France
Received:
10
April
2022
Accepted:
17
May
2022
Context. The chemo-physical parametrisation of stellar spectra is essential for understanding the nature and evolution of stars and of Galactic stellar populations. A worldwide observational effort from the ground has provided, in one century, an extremely heterogeneous collection of chemical abundances for about two million stars in total, with fragmentary sky coverage.
Aims. This situation is revolutionised by the Gaia third data release (DR3), which contains the parametrisation of Radial Velocity Spectrometer (RVS) data performed by the General Stellar Parametriser-spectroscopy, GSP-Spec, module. Here we describe the parametrisation of the first 34 months of Gaia RVS observations.
Methods. GSP-Spec estimates the chemo-physical parameters from combined RVS spectra of single stars, without additional inputs from astrometric, photometric, or spectro-photometric BP/RP data. The main analysis workflow described here, MatisseGauguin, is based on projection and optimisation methods and provides the stellar atmospheric parameters; the individual chemical abundances of N, Mg, Si, S, Ca, Ti, Cr, Fe I, Fe II, Ni, Zr, Ce and Nd; the differential equivalent width of a cyanogen line; and the parameters of a diffuse interstellar band (DIB) feature. Another workflow, based on an artificial neural network (ANN) and referred to with the same acronym, provides a second set of atmospheric parameters that are useful for classification control. For both workflows, we implement a detailed quality flag chain considering different error sources.
Results. With about 5.6 million stars, the Gaia DR3 GSP-Spec all-sky catalogue is the largest compilation of stellar chemo-physical parameters ever published and the first one from space data. Internal and external biases have been studied taking into account the implemented flags. In some cases, simple calibrations with low degree polynomials are suggested. The homogeneity and quality of the estimated parameters enables chemo-dynamical studies of Galactic stellar populations, interstellar extinction studies from individual spectra, and clear constraints on stellar evolution models. We highly recommend that users adopt the provided quality flags for scientific exploitation.
Conclusions. The Gaia DR3 GSP-Spec catalogue is a major step in the scientific exploration of Milky Way stellar populations. It will be followed by increasingly large and higher quality catalogues in future data releases, confirming the Gaia promise of a new Galactic vision.
Key words: stars: fundamental parameters / stars: abundances / methods: data analysis / Galaxy: stellar content
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.