Open Access
Issue |
A&A
Volume 686, June 2024
|
|
---|---|---|
Article Number | A209 | |
Number of page(s) | 9 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/202348811 | |
Published online | 12 June 2024 |
- Aizpuru, A., Arjona, R., & Nesseris, S. 2021, Phys. Rev. D, 104, 043521 [CrossRef] [Google Scholar]
- Alestas, G., Kazantzidis, L., & Nesseris, S. 2022, Phys. Rev. D, 106, 103519 [NASA ADS] [CrossRef] [Google Scholar]
- Angulo, R. E., Zennaro, M., Contreras, S., et al. 2021, MNRAS, 507, 5869 [NASA ADS] [CrossRef] [Google Scholar]
- Aricò, G., Angulo, R. E., & Zennaro, M. 2022, Open Res Europe, 1:152 [Google Scholar]
- Arnaldo, I., Krawiec, K., & O’Reilly, U. M. 2014, Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, GECCO ’14 (New York: Association for Computing Machinery), 879 [CrossRef] [Google Scholar]
- Bardeen, J. M., Bond, J. R., Kaiser, N., & Szalay, A. S. 1986, ApJ, 304, 15 [Google Scholar]
- Bartlett, D. J., Desmond, H., & Ferreira, P. G. 2023a, IEEE Transactions on Evolutionary Computation, 1 [Google Scholar]
- Bartlett, D. J., Desmond, H., & Ferreira, P. G. 2023b, The Genetic and Evolutionary Computation Conference 2023 [Google Scholar]
- Bartlett, D. J., Wandelt, B. D., Zennaro, M., Ferreira, P. G., & Desmond, H. 2024, A&A, 686, A150 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Biggio, L., Bendinelli, T., Neitz, A., Lucchi, A., & Parascandolo, G. 2021, in Proceedings of the 38th International Conference on Machine Learning, eds. M. Meila, & T. Zhang, Proc. Mach. Learn. Res., 139, 936 [Google Scholar]
- Blas, D., Lesgourgues, J., & Tram, T. 2011, J. Cosmol. Astropart. Phys., 2011, 034 [CrossRef] [Google Scholar]
- Burlacu, B. 2023, Proceedings of the Companion Conference on Genetic and Evolutionary Computation, GECCO ’23 Companion (New York: Association for Computing Machinery), 2412 [CrossRef] [Google Scholar]
- Burlacu, B., Kronberger, G., & Kommenda, M. 2020, Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, GECCO ’20 (New York: Association for Computing Machinery), 1562 [CrossRef] [Google Scholar]
- Cava, W. G. L., Orzechowski, P., Burlacu, B., et al. 2021, arXiv e-prints [arXiv:2107.14351] [Google Scholar]
- Cranmer, M. 2020, https://doi.org/10.5281/zenodo.4041459 [Google Scholar]
- Cranmer, M. 2023, arXiv e-prints [arXiv:2305.01582] [Google Scholar]
- Cranmer, M., Sanchez Gonzalez, A., Battaglia, P., et al. 2020, arXiv e-prints [arXiv:2006.11287] [Google Scholar]
- David, E. 1989, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley) [Google Scholar]
- de Franca, F. O., & Aldeia, G. S. I. 2021, Evolu. Comput., 29, 367 [CrossRef] [Google Scholar]
- de Franca, F. O., & Kronberger, G. 2023, in Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’23 (New York: Association for Computing Machinery), 1064 [CrossRef] [Google Scholar]
- Delgado, A. M., Wadekar, D., Hadzhiyska, B., et al. 2022, MNRAS, 515, 2733 [NASA ADS] [CrossRef] [Google Scholar]
- Desmond, H., Bartlett, D. J., & Ferreira, P. G. 2023, MNRAS, 521, 1817 [NASA ADS] [CrossRef] [Google Scholar]
- Diemer, B. 2018, ApJS, 239, 35 [NASA ADS] [CrossRef] [Google Scholar]
- Eisenstein, D. J., & Hu, W. 1998, ApJ, 496, 605 [Google Scholar]
- Eisenstein, D. J., & Hu, W. 1999, ApJ, 511, 5 [Google Scholar]
- Euclid Collaboration (Knabenhans, M., et al.) 2021, MNRAS, 505, 2840 [NASA ADS] [CrossRef] [Google Scholar]
- Fendt, W. A., & Wandelt, B. D. 2007a, ApJ, submitted [arXiv:0712.0194] [Google Scholar]
- Fendt, W. A., & Wandelt, B. D. 2007b, ApJ, 654, 2 [NASA ADS] [CrossRef] [Google Scholar]
- Hahn, O., List, F., & Porqueres, N. 2023, JCAP, submitted [arXiv:2311.03291] [Google Scholar]
- Haupt, R., & Haupt, S. 2004, Practical Genetic Algorithms, 2nd edn. (Wyley) [Google Scholar]
- Heitmann, K., Lawrence, E., Kwan, J., Habib, S., & Higdon, D. 2014, ApJ, 780, 111 [Google Scholar]
- Jin, Y., Fu, W., Kang, J., & Guo, J. 2019, arXiv e-prints [arXiv:1910.08892] [Google Scholar]
- Kamerkar, A., Nesseris, S., & Pinol, L. 2023, Phys. Rev. D, 108, 043509 [NASA ADS] [CrossRef] [Google Scholar]
- Kammerer, L., Kronberger, G., Burlacu, B., et al. 2021, arXiv e-prints [arXiv:2109.13895] [Google Scholar]
- Koksbang, S. M. 2023a, Phys. Rev. D, 107, 103522 [CrossRef] [Google Scholar]
- Koksbang, S. M. 2023b, Phys. Rev. D, 108, 043539 [NASA ADS] [CrossRef] [Google Scholar]
- Koksbang, S. M. 2023c, Phys. Rev. Lett., 130, 201003 [NASA ADS] [CrossRef] [Google Scholar]
- Kommenda, M., Burlacu, B., Kronberger, G., & Affenzeller, M. 2020, Genet. Program. Evol. Mach., 21, 471 [CrossRef] [Google Scholar]
- La Cava, W., Helmuth, T., Spector, L., & Moore, J. H. 2019, Evolu. Comput., 27, 377 [CrossRef] [Google Scholar]
- Landajuela, M., Lee, C. S., Yang, J., et al. 2022, A Unified Framework for Deep Symbolic Regression, 36th Conference on Neural Information Processing Systems [Google Scholar]
- Laumanns, M., Thiele, L., Deb, K., & Zitzler, E. 2002, Evol. Comput., 10, 263 [CrossRef] [Google Scholar]
- Lemos, P., Jeffrey, N., Cranmer, M., Ho, S., & Battaglia, P. 2023, Mach. Learn. Sci. Technol., 4, 045002 [CrossRef] [Google Scholar]
- Levenberg, K. 1944, Quart. Appl. Math., 2, 164 [Google Scholar]
- Lewis, A., Challinor, A., & Lasenby, A. 2000, ApJ, 538, 473 [Google Scholar]
- Lodha, K., Pinol, L., Nesseris, S., et al. 2024, MNRAS, 530, 1424 [NASA ADS] [CrossRef] [Google Scholar]
- Marquardt, D. W. 1963, J. Soc. Indust. Appl. Math., 11, 431 [CrossRef] [Google Scholar]
- McConaghy, T. 2011, in FFX: Fast, Scalable, Deterministic Symbolic Regression Technology, eds. R. Riolo, E. Vladislavleva, & J. H. Moore (New York: Springer), 235 [Google Scholar]
- Miniati, F., & Gregori, G. 2022, Sci. Rep., 12, 11709 [NASA ADS] [CrossRef] [Google Scholar]
- Mootoovaloo, A., Jaffe, A. H., Heavens, A. F., & Leclercq, F. 2022, Astron. Comput., 38, 100508 [NASA ADS] [CrossRef] [Google Scholar]
- Orjuela-Quintana, J. B., Nesseris, S., & Cardona, W. 2023, Phys. Rev. D, 107, 083520 [CrossRef] [Google Scholar]
- Orjuela-Quintana, J. B., Nesseris, S., & Sapone, D. 2024, Phys. Rev. D, 109, 063511 [NASA ADS] [CrossRef] [Google Scholar]
- Petersen, B. K., Larma, M. L., Mundhenk, T. N., et al. 2021, International Conference on Learning Representations [Google Scholar]
- Planck Collaboration VI. 2020, A&A, 641, A6 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- René Broløs, K., Vieira Machado, M., Cave, C., et al. 2021, arXiv e-prints [arXiv:2104.05417] [Google Scholar]
- Rivero, D., Fernandez-Blanco, E., & Pazos, A. 2022, Exp. Syst. Appl., 198, 116712 [CrossRef] [Google Scholar]
- Schmidt, M., & Lipson, H. 2009, Science, 324, 81 [CrossRef] [Google Scholar]
- Schmidt, M., & Lipson, H. 2011, in Age-Fitness Pareto Optimization (New York: Springer), eds. R. Riolo, T. McConaghy, & E. Vladislavleva, 129 [Google Scholar]
- Smith, R. E., Peacock, J. A., Jenkins, A., et al. 2003, MNRAS, 341, 1311 [Google Scholar]
- Sousa, T., Bartlett, D. J., Desmond, H., & Ferreira, P. G. 2024, Phys. Rev. D, 109, 083524 [NASA ADS] [CrossRef] [Google Scholar]
- Spurio Mancini, A., Piras, D., Alsing, J., Joachimi, B., & Hobson, M. P. 2022, MNRAS, 511, 1771 [NASA ADS] [CrossRef] [Google Scholar]
- Tenachi, W., Ibata, R., & Diakogiannis, F. I. 2023, ApJ, 959, 99 [NASA ADS] [CrossRef] [Google Scholar]
- Turing, A. M. 1950, Mind, LIX, 433 [CrossRef] [Google Scholar]
- Udrescu, S. M., & Tegmark, M. 2020, Sci. Adv., 6, eaay2631 [NASA ADS] [CrossRef] [Google Scholar]
- Udrescu, S. M., Tan, A., Feng, J., et al. 2020, AI Feynman 2.0: Pareto-optimal Symbolic Regression Exploiting Graph Modularity, 34th Conference on Neural Information Processing Systems [Google Scholar]
- Virgolin, M., Alderliesten, T., Witteveen, C., & Bosman, P. A. N. 2021, Evolu. Comput., 29, 211 [CrossRef] [Google Scholar]
- Wadekar, D., Thiele, L., Hill, J. C., et al. 2023, MNRAS, 522, 2628 [NASA ADS] [CrossRef] [Google Scholar]
- Winther, H. A., Casas, S., Baldi, M., et al. 2019, Phys. Rev. D, 100, 123540 [CrossRef] [Google Scholar]
- Worm, T., & Chiu, K. 2013, Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, GECCO ’13 (New York: Association for Computing Machinery), 1021 [CrossRef] [Google Scholar]
- Zennaro, M., Angulo, R. E., Pellejero-Ibáñez, M., et al. 2023, MNRAS, 524, 2407 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.