Open Access
Issue
A&A
Volume 683, March 2024
Article Number A145
Number of page(s) 23
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/202347216
Published online 15 March 2024
  1. Akhlaghi, M. 2019, arXiv e-prints [arXiv:1989.11238] [Google Scholar]
  2. Akhlaghi, M., & Ichikawa, T. 2015, ApJS, 220, 1 [Google Scholar]
  3. Barro, G., Pérez-González, P. G., Cava, A., et al. 2019, ApJS, 243, 22 [NASA ADS] [CrossRef] [Google Scholar]
  4. Beckwith, S. V. W., Stiavelli, M., Koekemoer, A. M., et al. 2006, AJ, 132, 1729 [Google Scholar]
  5. Bertin, E., & Arnouts, S. 1996, A & AS, 117, 393 [NASA ADS] [Google Scholar]
  6. Bonnarel, F., Fernique, P., Bienaymé, O., et al. 2000, A & AS, 143, 33 [NASA ADS] [Google Scholar]
  7. Borlaff, A., Trujillo, I., Román, J., et al. 2019, A & A, 621, A133 [Google Scholar]
  8. Buitrago, F., & Trujillo, I. 2024, A & A, 682, A110 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  9. Buitrago, F., Trujillo, I., Curtis-Lake, E., et al. 2017, MNRAS, 466, 4888 [NASA ADS] [Google Scholar]
  10. Chabrier, G. 2003, PASP, 115, 763 [Google Scholar]
  11. Chamba, N. 2020, Res. Notes Am. Astron. Soc., 4, 117 [NASA ADS] [Google Scholar]
  12. Chamba, N., Trujillo, I., & Knapen, J. H. 2022, A & A, 667, A87 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  13. Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L. 2018, EEE Trans. Pattern Anal. Mach. Intell., 40, 834 [CrossRef] [Google Scholar]
  14. Damjanov, I., Zahid, H. J., Geller, M. J., et al. 2019, ApJ, 872, 91 [NASA ADS] [CrossRef] [Google Scholar]
  15. Daniel, W. 1990, Applied Nonparametric Statistics, Duxbury Advanced Series in Statistics and Decision Sciences (Boston: PWS-KENT Pub.) [Google Scholar]
  16. Deng, J., Dong, W., Socher, R., et al. 2009, in IEEE conference on computer vision and pattern recognition, 248 [Google Scholar]
  17. Díaz-García, S., Comerón, S., Courteau, S., et al. 2022, A & A, 667, A109 [CrossRef] [EDP Sciences] [Google Scholar]
  18. Domínguez Sánchez, H., Huertas-Company, M., Bernardi, M., Tuccillo, D., & Fischer, J. L. 2018, MNRAS, 476, 3661 [Google Scholar]
  19. Duc, P.-A., Cuillandre, J.-C., Karabal, E., et al. 2015, MNRAS, 446, 120 [Google Scholar]
  20. Euclid Collaboration (Borlaff, A. S. P., et al.), 2022, A & A, 657, A92 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  21. González, R. E., Muñoz, R. P., & Hernández, C. A. 2018, Astron. Comput., 25, 103 [CrossRef] [Google Scholar]
  22. Grogin, N. A., Kocevski, D. D., Faber, S. M., et al. 2011, ApJS, 197, 35 [NASA ADS] [CrossRef] [Google Scholar]
  23. Hausen, R., & Robertson, B. E. 2020, ApJS, 248, 20 [CrossRef] [Google Scholar]
  24. He, K., Zhang, X., Ren, S., & Sun, J. 2016, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770 [Google Scholar]
  25. He, T., Zhang, Z., Zhang, H., et al. 2019, IEEE/CVF Conf. Computer Vision Pattern Recognition, 2019, 558 [Google Scholar]
  26. He, K., Gkioxari, G., Dollár, P., & Girshick, R. 2020, IEEE Trans. Pattern Anal. Mach. Intell., 42, 386 [CrossRef] [Google Scholar]
  27. Hilz, M., Naab, T., & Ostriker, J. P. 2013, MNRAS, 429, 2924 [NASA ADS] [CrossRef] [Google Scholar]
  28. Hoerl, A. E., & Kennard, R. W. 1970, Technometrics, 12, 69 [CrossRef] [Google Scholar]
  29. Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. 2017, in IEEE Conference on Computer Vision and Pattern Recognition (CPVR), 2261 [Google Scholar]
  30. Huertas-Company, M., Gravet, R., Cabrera-Vives, G., et al. 2015a, ApJS, 221, 8 [NASA ADS] [CrossRef] [Google Scholar]
  31. Huertas-Company, M., Pérez-González, P. G., Mei, S., et al. 2015b, ApJ, 809, 95 [NASA ADS] [CrossRef] [Google Scholar]
  32. Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90 [NASA ADS] [CrossRef] [Google Scholar]
  33. Iakubovskii, P. 2019, https://github.com/qubvel/segmentation_models.pytorch [Google Scholar]
  34. Illingworth, G., Magee, D., Bouwens, R., et al. 2016, arXiv e-prints [arXiv:1686.88841] [Google Scholar]
  35. Ivezic, Ž., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111 [NASA ADS] [CrossRef] [Google Scholar]
  36. Kingma, D. P., & Ba, J. 2014, arXiv e-prints [arXiv:1412.6988] [Google Scholar]
  37. Kingma, D. P., & Welling, M. 2013, arXiv e-prints [arXiv: 1312.6114] [Google Scholar]
  38. Koekemoer, A. M., Faber, S. M., Ferguson, H. C., et al. 2011, ApJS, 197, 36 [NASA ADS] [CrossRef] [Google Scholar]
  39. Krizhevsky, A., Sutskever, I., & Hinton, G. E. 2017, Commun. ACM, 60, 84 [CrossRef] [Google Scholar]
  40. Laureijs, R., Amiaux, J., Arduini, S., et al. 2011, arXiv e-prints [arXiv:1118.3193] [Google Scholar]
  41. Lilly, S. J., Le Brun, V., Maier, C., et al. 2009, ApJS, 184, 218 [Google Scholar]
  42. Martín-Navarro, I., Bakos, J., Trujillo, I., et al. 2012, MNRAS, 427, 1102 [Google Scholar]
  43. Martín-Navarro, I., Trujillo, I., Knapen, J. H., Bakos, J., & Fliri, J. 2014, MNRAS, 441, 2809 [CrossRef] [Google Scholar]
  44. Martínez-Lombilla, C., Trujillo, I., & Knapen, J. H. 2019, MNRAS, 483, 664 [CrossRef] [Google Scholar]
  45. Mihos, J. C. 2019, arXiv e-prints [arXiv: 1989.89456] [Google Scholar]
  46. Nayyeri, H., Hemmati, S., Mobasher, B., et al. 2017, ApJS, 228, 7 [NASA ADS] [CrossRef] [Google Scholar]
  47. Oke, J. B., & Gunn, J. E. 1983, ApJ, 266, 713 [NASA ADS] [CrossRef] [Google Scholar]
  48. Paszke, A., Gross, S., Massa, F., et al. 2019, in Advances in Neural Information Processing Systems 32 (USA: Curran Associates, Inc.), 8024 [Google Scholar]
  49. Pulsoni, C., Gerhard, O., Arnaboldi, M., et al. 2021, A & A, 647, A95 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  50. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. 2015, arXiv e-prints [arXiv:1586.82648] [Google Scholar]
  51. Roediger, J. C., & Courteau, S. 2015, MNRAS, 452, 3209 [NASA ADS] [CrossRef] [Google Scholar]
  52. Ronneberger, O., Fischer, P., & Brox, T. 2015, Lect. Notes Comput. Sci., including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics (Berlin: Springer), 9351 [Google Scholar]
  53. Santini, P., Ferguson, H. C., Fontana, A., et al. 2015, ApJ, 801, 97 [Google Scholar]
  54. Schaye, J. 2004, ApJ, 609, 667 [NASA ADS] [CrossRef] [Google Scholar]
  55. Sérsic, J. L. 1968, Atlas de Galaxias Australes (Cordoba, Argentina: Observatorio Astronomico) [Google Scholar]
  56. Sheskin, D. J. 2000, Handbook of Parametric and Nonparametric Statistical Procedures, 2nd edn. (London: CHAPMAN & HALL/CRC) [Google Scholar]
  57. Siegel, S., & Castellan, N. 1988, Nonparametric Statistics for the Behavioral Sciences, McGraw-Hill international editions statistics series (USA: McGraw-Hill) [Google Scholar]
  58. Soria, X., Riba, E., & Sappa, A. 2020, in 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), 1912 [CrossRef] [Google Scholar]
  59. Stefanon, M., Yan, H., Mobasher, B., et al. 2017, ApJS, 229, 32 [NASA ADS] [CrossRef] [Google Scholar]
  60. Straatman, C. M. S., van der Wel, A., Bezanson, R., et al. 2018, ApJS, 239, 27 [NASA ADS] [CrossRef] [Google Scholar]
  61. Takikawa, T., Acuna, D., Jampani, V., & Fidler, S. 2019, in IEEE/CVF International Conference on Computer Vision (ICCV), 5228 [Google Scholar]
  62. Tan, M., & Le, Q. V. 2019, in 36th International Conference on Machine Learning, ICML 2019 [Google Scholar]
  63. Taylor, M. B. 2005, ASP Conf. Ser., 347, 29 [Google Scholar]
  64. Trujillo, I., & Fliri, J. 2016, ApJ, 823, 123 [Google Scholar]
  65. Trujillo, I., Chamba, N., & Knapen, J. H. 2020, MNRAS, 493, 87 [NASA ADS] [CrossRef] [Google Scholar]
  66. van der Kruit, P. C. 1979, A & AS, 38, 15 [NASA ADS] [Google Scholar]
  67. van der Kruit, P. C., & Searle, L. 1981a, A & A, 95, 105 [Google Scholar]
  68. van der Kruit, P. C., & Searle, L. 1981b, A & A, 95, 116 [Google Scholar]
  69. van der Wel, A., Noeske, K., Bezanson, R., et al. 2016, ApJS, 223, 29 [Google Scholar]
  70. van der Wel, A., Bezanson, R., D'Eugenio, F., et al. 2021, ApJS, 256, 44 [NASA ADS] [CrossRef] [Google Scholar]
  71. Vega-Ferrero, J., Domínguez Sánchez, H., Bernardi, M., et al. 2021, MNRAS, 506, 1927 [NASA ADS] [CrossRef] [Google Scholar]
  72. Walmsley, M., Smith, L., Lintott, C., et al. 2020, MNRAS, 491, 1554 [Google Scholar]
  73. Wu, H., Zhang, J., Huang, K., Liang, K., & Yu, Y. 2019, arXiv e-prints [arXiv:1983.11816] [Google Scholar]
  74. Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. 2017, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5987 [Google Scholar]
  75. Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., & Liang, J. 2018, Lect. Notes Comput. Sci., including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics (Berlin: Springer), 11045 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.