Open Access

Table 2.

Best parameter estimates obtained from BXA fits to the XMM-Newton and Suzaku datasets.

Parameters XMM1 XMM2 Suz XMM3 XMM4 XMM5
M1=TBabs*zpowerlw

ΓM1 2.08±0.03 2.10±0.01 1 . 94 0.02 + 0.01 $ 1.94^{+0.01}_{-0.02} $ 1.77±0.01 1 . 77 0.01 + 0.02 $ 1.77^{+0.02}_{-0.01} $ 1.77±0.02
A [10−3] 3.73±0.08 5 . 13 0.04 + 0.03 $ 5.13^{+0.03}_{-0.04} $ 3.82±0.05 0.57±0.01 0.275±0.004 0.268±0.004
C 649.32 2202.89 2952.62 1976.62 1222.69 1155.96
C/d.o.f. 1.27 1.54 1.27 1.21 1.25 1.22
logZ −148.87 −487.89 −649.38 −438.98 −274.40 −259.81

M2=TBabs*[zpowerlw(1) + zpowerlw(2)]

Γ1 2 . 68 0.23 + 0.36 $ 2.68^{+0.36}_{-0.23} $ 2 . 46 0.07 + 0.09 $ 2.46^{+0.09}_{-0.07} $ 3 . 18 0.19 + 0.23 $ 3.18^{+0.23}_{-0.19} $ 1 . 97 0.05 + 0.08 $ 1.97^{+0.08}_{-0.05} $ 2 . 03 0.06 + 0.09 $ 2.03^{+0.09}_{-0.06} $ 1.96±0.03
A1 [10−3] 2 . 02 0.71 + 0.83 $ 2.02^{+0.83}_{-0.71} $ 3 . 92 0.46 + 0.36 $ 3.92^{+0.36}_{-0.46} $ 1 . 43 0.28 + 0.32 $ 1.43^{+0.32}_{-0.28} $ 0 . 50 0.05 + 0.03 $ 0.50^{+0.03}_{-0.05} $ 0 . 24 0.025 + 0.014 $ 0.24^{+0.014}_{-0.025} $ 0 . 244 0.007 + 0.005 $ 0.244^{+0.005}_{-0.007} $
Γ2 1 . 39 0.36 + 0.24 $ 1.39^{+0.24}_{-0.36} $ 1 . 21 0.20 + 0.17 $ 1.21^{+0.17}_{-0.20} $ 1 . 64 0.06 + 0.05 $ 1.64^{+0.05}_{-0.06} $ 0 . 82 0.24 + 0.25 $ 0.82^{+0.25}_{-0.24} $ 0 . 77 0.23 + 0.24 $ 0.77^{+0.24}_{-0.23} $ 0 . 58 0.07 + 0.16 $ 0.58^{+0.16}_{-0.07} $
A2 [10−3] 1 . 39 0.77 + 0.70 $ 1.39^{+0.70}_{-0.77} $ 0 . 90 0.33 + 0.44 $ 0.90^{+0.44}_{-0.33} $ 2 . 44 0.29 + 0.27 $ 2.44^{+0.27}_{-0.29} $ 0 . 054 0.025 + 0.052 $ 0.054^{+0.052}_{-0.025} $ 0 . 028 0.012 + 0.023 $ 0.028^{+0.023}_{-0.012} $ 0 . 016 0.003 + 0.007 $ 0.016^{+0.007}_{-0.003} $
C 533.06 1552.48 2390.05 1748.31 1079.43 1039.99
C/d.o.f. 1.04 1.09 1.03 1.07 1.10 1.10
logZ −125.78 −349.69 −530.01 −392.20 −246.03 −238.62

M3=TBabs*(compTT + zpowerlw + uxclumpy-reflect)

kBTe,warm 0.18±0.04 0 . 13 0.03 + 0.02 $ 0.13^{+0.02}_{-0.03} $ 0 . 20 0.04 + 0.03 $ 0.20^{+0.03}_{-0.04} $ 0 . 20 0.02 + 0.03 $ 0.20^{+0.03}_{-0.02} $ 0 . 17 0.11 + 0.09 $ 0.17^{+0.09}_{-0.11} $ 0.17
τwarm 18 3 + 6 $ 18^{+6}_{-3} $ 28 4 + 12 $ 28^{+12}_{-4} $ 15 2 + 5 $ 15^{+5}_{-2} $ 18 3 + 2 $ 18^{+2}_{-3} $ 14 5 + 12 $ 14^{+12}_{-5} $ 14
AcompTT 1 . 44 0.62 + 1.09 $ 1.44^{+1.09}_{-0.62} $ 0 . 75 0.40 + 0.25 $ 0.75^{+0.25}_{-0.40} $ 2 . 60 1.09 + 0.98 $ 2.60^{+0.98}_{-1.09} $ 0 . 057 0.011 + 0.024 $ 0.057^{+0.024}_{-0.011} $ 0 . 12 0.10 + 0.52 $ 0.12^{+0.52}_{-0.10} $ <0.1
Γ 1 . 80 0.08 + 0.11 $ 1.80^{+0.11}_{-0.08} $ 1.97±0.03 1 . 82 0.02 + 0.03 $ 1.82^{+0.03}_{-0.02} $ 1 . 68 0.03 + 0.02 $ 1.68^{+0.02}_{-0.03} $ 1 . 80 0.03 + 0.03 $ 1.80^{+0.03}_{-0.03} $ 1 . 83 0.03 + 0.02 $ 1.83^{+0.02}_{-0.03} $
APL [10−3] 2 . 85 0.22 + 0.23 $ 2.85^{+0.23}_{-0.22} $ 4.4±0.11 3 . 28 + 0.10 0.12 $ 3.28^{-0.12}_{+0.10} $ 0 . 51 0.02 + 0.01 $ 0.51^{+0.01}_{-0.02} $ 0.26±0.01 0.261±0.005
AREFL [10−3] <9.6 15 . 9 3.7 + 4.7 $ 15.9^{+4.7}_{-3.7} $ 4 . 40 1.27 + 1.61 $ 4.40^{+1.61}_{-1.27} $ 1 . 06 0.26 + 0.21 $ 1.06^{+0.21}_{-0.26} $ 1 . 85 0.30 + 0.40 $ 1.85^{+0.40}_{-0.30} $ 2 . 15 0.36 + 0.39 $ 2.15^{+0.39}_{-0.36} $
[ F SX , COMPTT F TOT ] 0.3 2.0 keV $ \left [\frac {F_{\mathrm {SX,COMPTT}}}{F_{\mathrm {TOT}}} \right ]_{\mathrm {0.3-2.0\,keV}} $ 0 . 25 0.06 + 0.05 $ 0.25^{+0.05}_{-0.06} $ 0.14±0.02 0.24±0.03 0 . 10 0.01 + 0.02 $ 0.10^{+0.02}_{-0.01} $ 0.03±0.02 <0.02
[ F REFL , UXCL F TOT ] 2 10 keV $ \left [\frac {F_{\mathrm {REFL,UXCL}}}{F_{\mathrm {TOT}}} \right ]_{\mathrm {2-10\,keV}} $ <0.07 0.08±0.02 0.04±0.01 0.06±0.01 0.16±0.02 0.18±0.03
C 531.78 1555.71 2330.62 1701.94 1031.37 940.33
C/d.o.f. 1.04 1.09 1.00 1.05 1.06 0.99
log Z −127.16 −353.62 −520.17 −388.63 −235.51 −216.20

Notes. All parameter estimates are the median value of the BXA-posterior distributions, and the uncertainties correspond to 90% confidence limits, unless marked otherwise.

Exhibits bimodal posteriors. The quoted parameter values correspond to the distribution around the mode about which the integrated probability is higher.

Parameters were kept frozen when calculating the upper limit to AcompTT.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.