Issue |
A&A
Volume 665, September 2022
|
|
---|---|---|
Article Number | A20 | |
Number of page(s) | 13 | |
Section | Stellar structure and evolution | |
DOI | https://doi.org/10.1051/0004-6361/202142331 | |
Published online | 02 September 2022 |
Binary black hole mergers from young massive clusters in the pair-instability supernova mass gap
1
Helmholtz-Instituts für Strahlen- und Kernphysik, Nussallee 14-16, 53115 Bonn, Germany
2
Argelander-Institut für Astronomie, Auf dem Hügel 71, 53121 Bonn, Germany
e-mail: sambaran@astro.uni-bonn.de
Received:
29
September
2021
Accepted:
14
June
2022
Context. The recent discovery of the binary black hole (BBH) merger event GW190521, between two black holes (BHs) of ≈100 Msamp, in addition to other massive BBH merger events involving BHs within the pair-instability supernova (PSN) mass gap have sparked widespread debate on the origin of such extreme gravitational-wave (GW) events. GW190521 simultaneously triggers two critical questions: how BHs can appear within the ‘forbidden’ PSN gap and, if they do, how they get to participate in general-relativistic (GR) mergers.
Aims. In this study, I investigate whether dynamical interactions in young massive clusters (YMCs) serve as a viable scenario for assembling PSN-gap BBH mergers.
Methods. To that end, I explore a grid of 40 new evolutionary models of a representative YMC of initial mass and size Mcl = 7.5 × 104 Msamp (N ≈ 1.28 × 105) and rh = 2 pc, respectively. The model grid ranges over metallicity 0.0002 ≤ Z ≤ 0.02 and comprises initial cluster configurations of King central concentration parameters W0 = 7 and 9. In each model, all BH progenitor stars are initially in primordial binaries following observationally motivated distributions. All cluster models are evolved with the direct, relativistic N-body code NBODY7, incorporating up-to-date remnant formation, BH natal spin, and GR merger recoil schemes.
Results. Binary black hole mergers from these model cluster computations agree well with the masses and effective spin parameters, χeff, of the events from the latest gravitational-wave transient catalogue (GWTC). In particular, GW190521-like, that is to say ≈200 Msamp, low χeff events are produced via a dynamical merger among BHs derived from star-star merger products. GW190403_051519-like, that is PSN-gap, highly asymmetric, high χeff events result from mergers involving BHs that are spun up via matter accretion or a binary interaction. The resulting present-day, differential intrinsic merger rate density, within the PSN gap, accommodates that from GWTC well.
Conclusions. This study demonstrates that, subject to model uncertainties, the tandem of massive binary evolution and dynamical interactions in ≲100 Myr-old, low metallicity YMCs in the Universe can plausibly produce GR mergers involving PSN-gap BHs and in rates consistent with that from up-to-date GW observations. Such clusters can produce extreme events similar to GW190521 and GW190403_051519. The upper limit of the models’ GW190521-type event rate is within the corresponding LIGO-Virgo-KAGRA (LVK)-estimated rate limits, although the typical model rate lies below LVK’s lower limit. The present YMC models yield a merger rate density of 0−3.8 × 10−2 yr−1 Gpc−3 for GW190521-type events. They produce GW190403_051519-like events at a rate within 0−1.6 × 10−1 yr−1 Gpc−3 and their total BBH-merger yield within the PSN gap is 0−8.4 × 10−1 yr−1 Gpc−3.
Key words: stars: black holes / stars: massive / stars: kinematics and dynamics / supernovae: general / methods: numerical / gravitational waves
© S. Banerjee 2022
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe-to-Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.