Issue |
A&A
Volume 657, January 2022
|
|
---|---|---|
Article Number | L15 | |
Number of page(s) | 6 | |
Section | Letters to the Editor | |
DOI | https://doi.org/10.1051/0004-6361/202141870 | |
Published online | 21 January 2022 |
Molecular gas properties of Q1700-MD94: A massive main-sequence galaxy at z ≈ 2⋆
1
Departamento de Astronomía, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Av. Esteban Iturra s/n Barrio Universitario, Casilla 160 Concepción, Chile
e-mail: kathehenriquez@udec.cl
2
Max-Planck-Institut für extraterrestische Physik (MPE), Giessenbachstr., 85748 Garching, Germany
3
Department of Astronomy, University of Maryland, College Park, MD, 20742
USA
4
Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago, Chile
Received:
23
July
2021
Accepted:
1
September
2021
We use a combination of new NOrthern Extended Millimeter Array (NOEMA) observations of the pair of [CI] transitions, the CO(7-6) line, and the dust continuum, in addition to ancillary CO(1-0) and CO(3-2) data, to study the molecular gas properties of Q1700-MD94. This is a massive, main-sequence galaxy at z ≈ 2. We find that for a reasonable set of assumptions for a typical massive star-forming galaxy, the CO(1-0), the [CI](1-0) and the dust continuum yield molecular gas masses that are consistent within a factor of ∼2. The global excitation properties of the molecular gas as traced by the [CI] and CO transitions are similar to those observed in other massive star-forming galaxies at z ∼ 2. Our large velocity gradient modeling using RADEX of the CO and [CI] spectral line energy distributions suggests the presence of relatively warm (Tkin = 41 K), dense (nH2 = 8 × 103 cm−3) molecular gas, comparable to the high-excitation molecular gas component observed in main-sequence star-forming galaxies at z ∼ 1. The galaxy size in the CO(1-0) and CO(7-6) line emission is comparable, which suggests that the highly excited molecular gas is distributed throughout the disk, powered by intense star formation activity. A confirmation of this scenario will require spatially resolved observations of the CO and [CI] lines, which can now be obtained with NOEMA upgraded capabilities.
Key words: galaxies: high-redshift / galaxies: ISM / galaxies: evolution
Data cubes are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/657/L15
© ESO 2022
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.