Open Access
Issue
A&A
Volume 699, July 2025
Article Number A18
Number of page(s) 19
Section Interstellar and circumstellar matter
DOI https://doi.org/10.1051/0004-6361/202553893
Published online 27 June 2025
  1. Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. 2019, arXiv e-prints [arXiv:1907.10902] [Google Scholar]
  2. Arellano-Córdova, K. Z., Esteban, C., García-Rojas, J., et al. 2020, MNRAS, 496, 1051 [Google Scholar]
  3. Bacmann, A., & Faure, A. 2016, A&A, 587, A130 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  4. Bayet, E., Viti, S., Williams, D. A., & Rawlings, J. M. C. 2008, ApJ, 676, 978 [NASA ADS] [CrossRef] [Google Scholar]
  5. Bayet, E., Viti, S., Williams, D. A., Rawlings, J. M. C., & Bell, T. 2009, ApJ, 696, 1466 [NASA ADS] [CrossRef] [Google Scholar]
  6. Bayet, E., Hartquist, T. W., Williams, D. A., et al. 2011, Mem. Soc. Astron. Ital., 82, 893 [Google Scholar]
  7. Behrens, E., Mangum, J. G., Holdship, J., et al. 2022, ApJ, 939, 119 [NASA ADS] [CrossRef] [Google Scholar]
  8. Bernal, J. J., Sephus, C. D., & Ziurys, L. M. 2021, ApJ, 922, 106 [NASA ADS] [CrossRef] [Google Scholar]
  9. Brown, P. D., Charnley, S. B., & Millar, T. J. 1988, MNRAS, 231, 409 [Google Scholar]
  10. Butterworth, J., Holdship, J., Viti, S., & García-Burillo, S. 2022, A&A, 667, A131 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  11. Chen, T., & Guestrin, C. 2016, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785 [Google Scholar]
  12. Chen, H., Lundberg, S., & Lee, S.-I. 2019, arXiv e-prints [arXiv:1911.11888] [Google Scholar]
  13. Chen, B. H., Hashimoto, T., Goto, T., et al. 2022, MNRAS, 509, 1227 [Google Scholar]
  14. Codella, C., & Bachiller, R. 1999, A&A, 350, 659 [NASA ADS] [Google Scholar]
  15. Colzi, L., Romano, D., Fontani, F., et al. 2022, A&A, 667, A151 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  16. Esteban, C., Fang, X., García-Rojas, J., & Toribio San Cipriano, L. 2017, MNRAS, 471, 987 [NASA ADS] [CrossRef] [Google Scholar]
  17. Fontani, F., Colzi, L., Bizzocchi, L., et al. 2022a, A&A, 660, A76 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  18. Fontani, F., Schmiedeke, A., Sánchez-Monge, A., et al. 2022b, A&A, 664, A154 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  19. Fontani, F., Vermariën, G., Viti, S., et al. 2024, A&A, 691, A180 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  20. Gal, R. L., Öberg, K. I., Teague, R., et al. 2021, ApJ Suppl. Ser., 257, 12 [Google Scholar]
  21. García-Burillo, S., Usero, A., Fuente, A., et al. 2010, A&A, 519, A2 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  22. Grassi, T., Padovani, M., Galli, D., et al. 2025, A&A, submitted [arXiv:2502.07874] [Google Scholar]
  23. Hacar, A., Bosman, A. D., & Van Dishoeck, E. F. 2020, A&A, 635, A4 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  24. Harada, N., Meier, D. S., Martín, S., et al. 2024a, The ALCHEMI Atlas: Principal Component Analysis Reveals Starburst Evolution in NGC, 253 [Google Scholar]
  25. Harada, N., Saito, T., Nishimura, Y., Watanabe, Y., & Sakamoto, K. 2024b, arXiv e-prints [arXiv:2405.09029] [Google Scholar]
  26. Hastie, T., Tibshirani, R., & Friedman, J. 2009, The Elements of Statistical Learning, Springer Series in Statistics (New York, NY: Springer) [CrossRef] [Google Scholar]
  27. Herbst, E., & van Dishoeck, E. F. 2009, Annu. Rev. A&A, 47, 427 [Google Scholar]
  28. Heyl, J., Butterworth, J., & Viti, S. 2023a, MNRAS, 526, 404 [Google Scholar]
  29. Heyl, J., Viti, S., & Vermariën, G. 2023b, Faraday Discuss., 245, 569 [Google Scholar]
  30. Holdship, J., Viti, S., Jiménez-Serra, I., Makrymallis, A., & Priestley, F. 2017, AJ, 154, 38 [NASA ADS] [CrossRef] [Google Scholar]
  31. Indriolo, N., Geballe, T. R., Oka, T., & McCall, B. J. 2007, ApJ, 671, 1736 [NASA ADS] [CrossRef] [Google Scholar]
  32. James, T. A., Viti, S., Yusef-Zadeh, F., Royster, M., & Wardle, M. 2021, ApJ, 916, 69 [NASA ADS] [CrossRef] [Google Scholar]
  33. Kane, S., Hawkins, K., & Maas, Z. 2023, American Astronomical Society Meeting Abstracts, 241, 208.11 [Google Scholar]
  34. König, S., Aalto, S., Muller, S., et al. 2018, A&A, 615, A122 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  35. Lamb, K., Malhotra, G., Vlontzos, A., et al. 2019, arXiv e-prints [arXiv:1910.03085] [Google Scholar]
  36. Li, J., Wang, J., Zhu, Q., Zhang, J., & Li, D. 2015, ApJ, 802, 40 [Google Scholar]
  37. Lundberg, S., & Lee, S.-I. 2017, arXiv e-prints [arXiv:1705.07874] [Google Scholar]
  38. Lundberg, S. M., Erion, G., Chen, H., et al. 2020, Nat. Mach. Intell., 2, 56 [CrossRef] [Google Scholar]
  39. McInnes, L., Healy, J., & Melville, J. 2020, arXiv e-prints [arXiv:1802.03426] [Google Scholar]
  40. Méndez-Delgado, J. E., Amayo, A., Arellano-Córdova, K. Z., et al. 2022, MNRAS, 510, 4436 [CrossRef] [Google Scholar]
  41. Milam, S. N., Savage, C., Brewster, M. A., Ziurys, L. M., & Wyckoff, S. 2005, ApJ, 634, 1126 [Google Scholar]
  42. Millar, T. J., Bennett, A., Rawlings, J. M. C., Brown, P. D., & Charnley, S. B. 1991, A&A Suppl. Ser., 87, 585 [Google Scholar]
  43. Molnar, C. 2022, Interpretable Machine Learning: A Guide for Making Black Box Models Explainable, 2nd edn. (Munich, Germany: Christoph Molnar) [Google Scholar]
  44. Pearson, K. 1901, London Edinburgh Dublin Philos. Mag. J. Sci., 2, 559 [CrossRef] [Google Scholar]
  45. Peñaloza, C. H., Clark, P. C., Glover, S. C. O., & Klessen, R. S. 2018, MNRAS, 475, 1508 [CrossRef] [Google Scholar]
  46. Ramos, A. A., Plaza, C. W., Navarro-Almaida, D., et al. 2024, MNRAS, 531, 4930 [NASA ADS] [CrossRef] [Google Scholar]
  47. Ribeiro, M. T., Singh, S., & Guestrin, C. 2016, arXiv e-prints [arXiv:1602.04938] [Google Scholar]
  48. Rollig, M., Abel, N. P., Bell, T., et al. 2007, A&A, 467, 187 [Google Scholar]
  49. Ruaud, M., Wakelam, V., & Hersant, F. 2016, MNRAS, 459, 3756 [Google Scholar]
  50. Sabatini, G., Bovino, S., Giannetti, A., et al. 2021, A&A, 652, A71 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  51. Scholbeck, C. A., Molnar, C., Heumann, C., Bischl, B., & Casalicchio, G. 2019, arXiv e-prints [arXiv:1904.03959] [Google Scholar]
  52. Semenov, D., Favre, C., Fedele, D., et al. 2018, A&A, 617, A28 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  53. Sewiło, M., Indebetouw, R., Charnley, S. B., et al. 2018, ApJ Lett., 853, L19 [Google Scholar]
  54. Sewiło, M., Karska, A., Kristensen, L. E., et al. 2022, ApJ, 933, 64 [Google Scholar]
  55. Shapley, L. S., & Shubik, M. 1971, Int. J. Game Theory, 1, 111 [Google Scholar]
  56. Shimonishi, T., Izumi, N., Furuya, K., & Yasui, C. 2021, ApJ, 922, 206 [NASA ADS] [CrossRef] [Google Scholar]
  57. Shimonishi, T., Tanaka, K. E. I., Zhang, Y., & Furuya, K. 2023, ApJ Lett., 946, L41 [Google Scholar]
  58. Sobol’, I. M. 1967, USSR Computat. Math. Math. Phys., 7, 86 [CrossRef] [Google Scholar]
  59. Spezzano, S., Caselli, P., Pineda, J. E., et al. 2020, A&A, 643, A60 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  60. Tafalla, M., Usero, A., & Hacar, A. 2021, A&A, 646, A97 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  61. Usero, A., García-Burillo, S., Fuente, A., Martín-Pintado, J., & Rodríguez-Fernández, N. J. 2004, A&A, 419, 897 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  62. van der Maaten, L., & Hinton, G. 2008, J. Mach. Learn. Res., 9, 2579 [Google Scholar]
  63. Viti, S., & Williams, D. A. 1999, MNRAS, 305, 755 [NASA ADS] [CrossRef] [Google Scholar]
  64. Wakelam, V., Herbst, E., Le Bourlot, J., et al. 2010, A&A, 517, A21 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  65. Wang, J., Qi, C., Li, S., & Wu, J. 2022, ApJ, 937, 120 [Google Scholar]
  66. Williams, D. A. 1998, Faraday Discuss., 109, 1 [Google Scholar]
  67. Wilson, C. D., Bemis, A., Ledger, B., & Klimi, O. 2023, MNRAS, 521, 717 [NASA ADS] [CrossRef] [Google Scholar]
  68. Woods, P. M., Kelly, G., Viti, S., et al. 2012, ApJ, 750, 19 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.