Open Access
Issue
A&A
Volume 698, May 2025
Article Number A1
Number of page(s) 19
Section Extragalactic astronomy
DOI https://doi.org/10.1051/0004-6361/202452854
Published online 28 May 2025
  1. AbdusSalam, S., Abel, S., & Romão, M. C. 2025, Phys. Rev. D, 111, 015022 [Google Scholar]
  2. Ahmed, S. N., Anthony, A. E., Beier, E. W., et al. 2004, Phys. Rev. Lett., 92, 181301 [Google Scholar]
  3. Akeson, R., Armus, L., Bachelet, E., et al. 2019, arXiv e-prints [arXiv:1902.05569] [Google Scholar]
  4. Alam, S., Aubert, M., Avila, S., et al. 2021, Phys. Rev., D, 103 [Google Scholar]
  5. Angulo, R. E., Zennaro, M., Contreras, S., et al. 2021, MNRAS, 507, 5869 [NASA ADS] [CrossRef] [Google Scholar]
  6. Aricò, G., Angulo, R. E., & Zennaro, M. 2021, arXiv e-prints [arXiv:2104.14568] [Google Scholar]
  7. Bakx, T., Chisari, N. E., & Vlah, Z. 2024, arXiv e-prints [arXiv:2407.04660] [Google Scholar]
  8. Bardeen, J. M., Bond, J. R., Kaiser, N., & Szalay, A. S. 1986, ApJ, 304, 15 [Google Scholar]
  9. Barreira, A., Krause, E., & Schmidt, F. 2018, JCAP, 2018, 015 [Google Scholar]
  10. Bartlett, D. J., Desmond, H., & Ferreira, P. G. 2023, in GECCO ’23 Companion: Proceedings of the Companion Conference on Genetic and Evolutionary Computation, 2402 [Google Scholar]
  11. Bartlett, D. J., Kammerer, L., Kronberger, G., et al. 2024a, A&A, 686, A209 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  12. Bartlett, D. J., Wandelt, B. D., Zennaro, M., Ferreira, P. G., & Desmond, H. 2024b, A&A, 686, A150 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  13. Bartlett, D. J., Desmond, H., & Ferreira, P. G. 2024c, IEEE Trans. Evol. Comput., 28, 950 [Google Scholar]
  14. Bayer, A. E., Banerjee, A., & Seljak, U. 2022, Phys. Rev. D, 105, 123510 [NASA ADS] [CrossRef] [Google Scholar]
  15. Bayron Orjuela-Quintana, J., Sapone, D., & Nesseris, S. 2024, arXiv e-prints [arXiv:2407.16640] [Google Scholar]
  16. Becker-Szendy, R., Bratton, C. B., Casper, D., et al. 1992, Phys. Rev. D, 46, 3720 [Google Scholar]
  17. Bird, S., Viel, M., & Haehnelt, M. G. 2012, MNRAS, 420, 2551 [Google Scholar]
  18. Blas, D., Lesgourgues, J., & Tram, T. 2011, JCAP, 2011, 034 [Google Scholar]
  19. Bond, J. R., Efstathiou, G., & Silk, J. 1980, Phys. Rev. Lett., 45, 1980 [NASA ADS] [CrossRef] [Google Scholar]
  20. Burlacu, B. 2023, in Proceedings of the Companion Conference on Genetic and Evolutionary Computation, GECCO ’23 Companion (New York, NY, USA: Association for Computing Machinery), 2412 [Google Scholar]
  21. Burlacu, B., Kronberger, G., & Kommenda, M. 2020, in Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion, GECCO ’20 (New York, NY, USA: Association for Computing Machinery), 1562 [Google Scholar]
  22. Carroll, S. M., Press, W. H., & Turner, E. L. 1992, ARA&A, 30, 499 [NASA ADS] [CrossRef] [Google Scholar]
  23. Chevallier, M., & Polarski, D. 2001, Int. J. Mod. Phys. D, 10, 213 [Google Scholar]
  24. Cooray, A., & Sheth, R. 2002, Phys. Rep., 372, 1 [Google Scholar]
  25. Cranmer, M., Sanchez Gonzalez, A., Battaglia, P., et al. 2020, Discovering Symbolic Models from Deep Learning with Inductive Biases (Curran Associates, Inc.) [Google Scholar]
  26. David, E. 1989, Genetic Algorithms in Search, Optimization andMachine Learning, (Addison-Wesley Publishing Company, Inc.) [Google Scholar]
  27. DESI Collaboration (Aghamousa, A., et al.) 2016, arXiv e-prints [arXiv:1611.00036] [Google Scholar]
  28. DESI Collaboration (Adame, A. G., et al.) 2024, arXiv e-prints [arXiv:2404.03002] [Google Scholar]
  29. Doux, C., Jain, B., Zeurcher, D., et al. 2022, MNRAS, 515, 1942 [Google Scholar]
  30. Eisenstein, D. J., & Hu, W. 1998, ApJ, 496, 605 [Google Scholar]
  31. Eisenstein, D. J., & Hu, W. 1999, ApJ, 511, 5 [Google Scholar]
  32. Euclid Collaboration (Knabenhans, M., et al.) 2019, MNRAS, 484, 5509 [Google Scholar]
  33. Euclid Collaboration (Knabenhans, M., et al.) 2021, MNRAS, 505, 2840 [NASA ADS] [CrossRef] [Google Scholar]
  34. Fendt, W. A., & Wandelt, B. D. 2007a, arXiv e-prints [arXiv:0712.0194] [Google Scholar]
  35. Fendt, W. A., & Wandelt, B. D. 2007b, ApJ, 654, 2 [NASA ADS] [CrossRef] [Google Scholar]
  36. Fukuda, Y., Hayakawa, T., Ichihara, E., et al. 1998a, Phys. Rev. Lett., 81, 1158 [Google Scholar]
  37. Fukuda, Y., Hayakawa, T., Ichihara, E., et al. 1998b, Phys. Rev. Lett., 81, 1562 [Google Scholar]
  38. Hahn, O., List, F., & Porqueres, N. 2024, JCAP, 2024, 063 [Google Scholar]
  39. Haupt, R., & Haupt, S. 2004, Practical Genetic Algorithms, 2nd edn. (Wyley) [Google Scholar]
  40. Heitmann, K., Higdon, D., White, M., et al. 2009, ApJ, 705, 156 [Google Scholar]
  41. Heitmann, K., Lawrence, E., Kwan, J., Habib, S., & Higdon, D. 2014, ApJ, 780, 111 [Google Scholar]
  42. Hu, W., & Eisenstein, D. J. 1998, ApJ, 498, 497 [Google Scholar]
  43. Jain, B., & Seljak, U. 1997, ApJ, 484, 560 [Google Scholar]
  44. Kolb, E. W., & Turner, M. S. 1990, The Early Universe, 69 [Google Scholar]
  45. Kommenda, M., Burlacu, B., Kronberger, G., & Affenzeller, M. 2020, Genet. Program. Evolvable Mach., 21, 471 [Google Scholar]
  46. Krause, E., & Eifler, T. 2017, MNRAS, 470, 2100 [NASA ADS] [CrossRef] [Google Scholar]
  47. Krause, E., Fang, X., Pandey, S., et al. 2021, arXiv e-prints [arXiv:2105.13548] [Google Scholar]
  48. Kronberger, G., Burlacu, B., Kommenda, M., Winkler, S. M., & Affenzeller, M. 2024, Symbolic Regression (Chapman & Hall/CRC Press) [CrossRef] [Google Scholar]
  49. La Cava, W., Orzechowski, P., Burlacu, B., et al. 2021, arXiv e-prints [arXiv:2107.14351] [Google Scholar]
  50. Lahav, O., Lilje, P. B., Primack, J. R., & Rees, M. J. 1991, MNRAS, 251, 128 [Google Scholar]
  51. Laumanns, M., Thiele, L., Deb, K., & Zitzler, E. 2002, Evol. Comput., 10, 263 [CrossRef] [Google Scholar]
  52. Laureijs, R., Amiaux, J., Arduini, S., et al. 2011, arXiv e-prints [arXiv:1110.3193] [Google Scholar]
  53. Lawrence, E., Heitmann, K., Kwan, J., et al. 2017, ApJ, 847, 50 [Google Scholar]
  54. Le Brun, A. M. C., McCarthy, I. G., Schaye, J., & Ponman, T. J. 2017, MNRAS, 466, 4442 [Google Scholar]
  55. Lesgourgues, J., & Pastor, S. 2006, Phys. Rep., 429, 307 [Google Scholar]
  56. Levenberg, K. 1944, Q. Appl. Math., 2, 164 [Google Scholar]
  57. Lewis, A., Challinor, A., & Lasenby, A. 2000, ApJ, 538, 473 [Google Scholar]
  58. Linder, E. V. 2003, Phys. Rev. Lett., 90, 091301 [Google Scholar]
  59. LSST Science Collaboration (Abell, P. A., et al.) 2009, arXiv e-prints [arXiv:0912.0201] [Google Scholar]
  60. Ma, C. -P., & Fry, J. N. 2000, ApJ, 543, 503 [Google Scholar]
  61. Marquardt, D. W. 1963, J. Soc. Indust. Appl. Math., 11, 431 [CrossRef] [Google Scholar]
  62. Mather, J. C., Fixsen, D. J., Shafer, R. A., Mosier, C., & Wilkinson, D. T. 1999, ApJ, 512, 511 [Google Scholar]
  63. McCarthy, I. G., Bird, S., Schaye, J., et al. 2018, MNRAS, 476, 2999 [NASA ADS] [CrossRef] [Google Scholar]
  64. Mead, A. J., Peacock, J. A., Heymans, C., Joudaki, S., & Heavens, A. F. 2015, MNRAS, 454, 1958 [NASA ADS] [CrossRef] [Google Scholar]
  65. Mead, A. J., Heymans, C., Lombriser, L., et al. 2016, MNRAS, 459, 1468 [Google Scholar]
  66. Mead, A. J., Brieden, S., Tröster, T., & Heymans, C. 2021, MNRAS, 502, 1401 [Google Scholar]
  67. Mootoovaloo, A., Jaffe, A. H., Heavens, A. F., & Leclercq, F. 2022, Astron. Comput., 38, 100508 [NASA ADS] [CrossRef] [Google Scholar]
  68. Nishimichi, T., Takada, M., Takahashi, R., et al. 2019, ApJ, 884, 29 [NASA ADS] [CrossRef] [Google Scholar]
  69. Orjuela-Quintana, J. B., Nesseris, S., & Sapone, D. 2024, Phys. Rev. D, 109, 063511 [NASA ADS] [CrossRef] [Google Scholar]
  70. Planck Collaboration VI. 2020, A&A, 641, A6 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  71. Russeil, E., de Franca, F. O., Malanchev, K., et al. 2024, in Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’24 (New York, NY, USA: Association for Computing Machinery), 961 [Google Scholar]
  72. Sato, M., & Nishimichi, T. 2013, Phys. Rev., D, 87, 123538 [Google Scholar]
  73. Seljak, U. 2000, MNRAS, 318, 203 [Google Scholar]
  74. Smith, R. E., & Angulo, R. E. 2019, MNRAS, 486, 1448 [NASA ADS] [CrossRef] [Google Scholar]
  75. Smith, R. E., Peacock, J. A., Jenkins, A., et al. 2003, MNRAS, 341, 1311 [Google Scholar]
  76. Springel, V. 2005, MNRAS, 364, 1105 [Google Scholar]
  77. Spurio Mancini, A., Piras, D., Alsing, J., Joachimi, B., & Hobson, M. P. 2022, MNRAS, 511, 1771 [NASA ADS] [CrossRef] [Google Scholar]
  78. Takada, M., & Jain, B. 2004, MNRAS, 348, 897 [Google Scholar]
  79. Takahashi, R., Sato, M., Nishimichi, T., Taruya, A., & Oguri, M. 2012, ApJ, 761, 152 [Google Scholar]
  80. Taylor, P. L., Kitching, T. D., & McEwen, J. D. 2018, Phys. Rev. D, 98, 043532 [Google Scholar]
  81. The LSST Dark Energy Science Collaboration (Mandelbaum, R., et al.) 2018, arXiv e-prints [arXiv:1809.01669] [Google Scholar]
  82. Turing, A. M. 1950, Mind, LIX, 433 [CrossRef] [Google Scholar]
  83. Villaescusa-Navarro, F., Hahn, C., Massara, E., et al. 2020, ApJS, 250, 2 [CrossRef] [Google Scholar]
  84. Weinberg, D. H., Mortonson, M. J., Eisenstein, D. J., et al. 2013, Phys. Rep., 530, 87 [Google Scholar]
  85. Winther, H. A., Casas, S., Baldi, M., et al. 2019, Phys. Rev. D, 100, 123540 [CrossRef] [Google Scholar]
  86. Zennaro, M., Angulo, R. E., Pellejero-Ibáñez, M., et al. 2023, MNRAS, 524, 2407 [Google Scholar]
  87. Zhai, Z., Tinker, J. L., Becker, M. R., et al. 2019, ApJ, 874, 95 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.