Open Access
Issue |
A&A
Volume 693, January 2025
|
|
---|---|---|
Article Number | A246 | |
Number of page(s) | 12 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/202451831 | |
Published online | 22 January 2025 |
- Bentéjac, C., Csörgő, A., & Martínez-Muñoz, G. 2021, Artif. Intell. Rev., 54, 1937 [Google Scholar]
- Breiman, L. 1996, Mach. Learn., 24, 123 [Google Scholar]
- Breiman, L. 2001, Mach. Learn., 45, 5 [Google Scholar]
- Carruba, V., Aljbaae, S., Caritá, G., et al. 2023, Front. Astron. Space Sci., 10, 1196223 [NASA ADS] [CrossRef] [Google Scholar]
- Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. 2002, J. Artif. Intell. Res., 16, 321 [CrossRef] [Google Scholar]
- Chen, T., & Guestrin, C. 2016, in Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785 [CrossRef] [Google Scholar]
- Chen, P.-W., Wang, J.-Y., & Lee, H.-M. 2004, IEEE, 13 2035 [Google Scholar]
- Cranmer, M., Tamayo, D., Rein, H., et al. 2021, PNAS, 118, e2026053118 [NASA ADS] [CrossRef] [Google Scholar]
- Cutler, A., Cutler, D., & Stevens, J. 2011, Random Forests, 45, 157 [Google Scholar]
- Domingos, R. C., Winter, O. C., & Yokoyama, T. 2006, MNRAS, 373, 1227 [NASA ADS] [CrossRef] [Google Scholar]
- Friedman, J. H. 2001, Annal. Stat., 29, 1189 [CrossRef] [Google Scholar]
- Fushiki, T. 2011, Stat. Comput., 21, 137 [CrossRef] [Google Scholar]
- Géron, A. 2022, Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow (USA: “O’Reilly Media, Inc.”) [Google Scholar]
- Han, H., Wang, W.-Y., & Mao, B.-H. 2005, in International Conference on Intelligent Computing (Berlin: Springer), 878 [Google Scholar]
- He, H., Bai, Y., Garcia, E. A., & Li, S. 2008, in International Joint Conference on Neural Networks, IEEE, 1322 [Google Scholar]
- Holman, M. J., & Wiegert, P. A. 1999, AJ, 117, 621 [Google Scholar]
- Hunter, R. 1967, MNRAS, 136, 245 [NASA ADS] [CrossRef] [Google Scholar]
- Ibrahim, M., AbdelRaouf, H., Amin, K. M., & Semary, N. 2023, Int. J. Comp. Inform., 10, 36 [Google Scholar]
- Ke, G., Meng, Q., Finley, T., et al. 2017, Adv. Neural Inf. Process. Syst., 30, 3146 [Google Scholar]
- Kumar, M., & Sheshadri, H. 2012, Int. J. Comp. Appl., 44, 1 [Google Scholar]
- Lam, C., & Kipping, D. 2018, MNRAS, 476, 5692 [NASA ADS] [CrossRef] [Google Scholar]
- Mitchell, T. 1997, Machine Learning, (McGraw Hill) [Google Scholar]
- Mohammed, R., Rawashdeh, J., & Abdullah, M. 2020, in International Conference on Information and Communication Systems, IEEE, 243 [Google Scholar]
- Neto, E. V., & Winter, O. 2001, AJ, 122, 440 [CrossRef] [Google Scholar]
- Pinheiro, T. F., & Sfair, R. 2021, A&A, 652, A149 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Quinlan, J. R. 1986, Mach. Learn., 1, 81 [Google Scholar]
- Rein, H., & Spiegel, D. S. 2015, MNRAS, 446, 1424 [Google Scholar]
- Rieder, S., & Kenworthy, M. A. 2016, A&A, 596, A9 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Schneider, J., Dedieu, C., Le Sidaner, P., Savalle, R., & Zolotukhin, I. 2011, A&A, 532, A79 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Shalev-Shwartz, S., & Ben-David, S. 2014, Understanding Machine Learning: From Theory to Algorithms (Cambridge: Cambridge University Press) [CrossRef] [Google Scholar]
- Stehman, S. V. 1997, Remote Sens. of Environ., 62, 77 [NASA ADS] [CrossRef] [Google Scholar]
- Tamayo, D., Silburt, A., Valencia, D., et al. 2016, ApJ, 832, L22 [NASA ADS] [CrossRef] [Google Scholar]
- Tamayo, D., Cranmer, M., Hadden, S., et al. 2020, PNAS, 117, 18194 [CrossRef] [PubMed] [Google Scholar]
- Wade, C., & Glynn, K. 2020, Hands-On Gradient Boosting with XGBoost and Scikit-learn: Perform Accessible Machine Learning and Extreme Gradient Boosting with Python (India: Packt Publishing Ltd) [Google Scholar]
- Weerts, H. J., Mueller, A. C., & Vanschoren, J. 2020, arXiv e-prints [arXiv:2007.07588] [Google Scholar]
- Zheng, Z., Cai, Y., & Li, Y. 2015, Comp. Inform., 34, 1017 [Google Scholar]
- Zou, Q., Xie, S., Lin, Z., Wu, M., & Ju, Y. 2016, Big Data Res., 5, 2 [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.