Open Access
Issue |
A&A
Volume 693, January 2025
|
|
---|---|---|
Article Number | A141 | |
Number of page(s) | 12 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/202451734 | |
Published online | 13 January 2025 |
- Ajay, P., Nagaraj, B., Kumar, R. A., Huang, R., & Ananthi, P. 2022, Scanning (Hoboken: Wiley) [Google Scholar]
- Ball, N. M., Loveday, J., & Brunner, R. J. 2008, MNRAS, 383, 907 [Google Scholar]
- Banerji, M., Lahav, O., Lintott, C. J., et al. 2010, MNRAS, 406, 342 [Google Scholar]
- Barden, M., Haussler, B., Peng, C. Y., Mcintosh, D. H., & Guo, Y. 2012, MNRAS, 422, 449 [CrossRef] [Google Scholar]
- Brammer, G. B., van Dokkum, P. G., & Coppi, P. 2008, ApJ, 686, 1503 [Google Scholar]
- Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000 [NASA ADS] [CrossRef] [Google Scholar]
- Caron, M., Misra, I., Mairal, J., et al. 2020, in Proceedings of the 34th International Conference on Neural Information Processing Systems, NIPS ’20 (Red Hook, NY, USA: Curran Associates Inc.) [Google Scholar]
- Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. 2020, in Proceedings of the 37th International Conference on Machine Learning, ICML’20 (JMLR.org) [Google Scholar]
- Cheng, T.-Y., Li, N., Conselice, C. J., et al. 2020, MNRAS, 494, 3750 [NASA ADS] [CrossRef] [Google Scholar]
- Cheng, T.-Y., Huertas-Company, M., Conselice, C. J., et al. 2021, MNRAS, 503, 4446 [NASA ADS] [CrossRef] [Google Scholar]
- Conselice, C. J. 2003, ApJS, 147, 1 [NASA ADS] [CrossRef] [Google Scholar]
- Conselice, C. J. 2014, ARA&A, 52, 291 [CrossRef] [Google Scholar]
- Conselice, C. J., Bershady, M. A., & Jangren, A. 2000, ApJ, 529, 886 [NASA ADS] [CrossRef] [Google Scholar]
- Conselice, C. J., Rajgor, S., & Myers, R. 2008, MNRAS, 386, 909 [CrossRef] [Google Scholar]
- Dai, Y., Xu, J., Song, J., et al. 2023, ApJS, 268, 34 [NASA ADS] [CrossRef] [Google Scholar]
- Dieleman, S., Willett, K. W., & Dambre, J. 2015, MNRAS, 450, 1441 [NASA ADS] [CrossRef] [Google Scholar]
- Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al. 2021, in 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021 (OpenReview.net) [Google Scholar]
- Ericsson, L., Gouk, H., Loy, C. C., & Hospedales, T. M. 2022, IEEE Signal Process. Mag., 39, 42 [Google Scholar]
- Fang, G., Ba, S., Gu, Y., et al. 2023, AJ, 165, 35 [NASA ADS] [CrossRef] [Google Scholar]
- Freeman, P. E., Izbicki, R., Lee, A. B., et al. 2013, MNRAS, 434, 282 [NASA ADS] [CrossRef] [Google Scholar]
- Ghosh, A., Urry, C. M., Wang, Z., et al. 2020, ApJ, 895, 112 [NASA ADS] [CrossRef] [Google Scholar]
- Gu, Y., Fang, G., Yuan, Q., Cai, Z., & Wang, T. 2018, AJ, 855, 10 [NASA ADS] [Google Scholar]
- Hartigan, J. A., & Wong, M. A. 1979, J. R. Stat. Soc. Ser. C, 28, 100 [Google Scholar]
- Häußler, B., Vika, M., Bamford, S. P., et al. 2022, A&A, 664, A92 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- He, K., Zhang, X., Ren, S., & Sun, J. 2016, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770 [Google Scholar]
- Hou, Y.-J., Xie, Z. X., Jian-Hu, Yao-Shen, & Zhou, C.-C. 2021, arXiv e-prints [arXiv:2109.05526] [Google Scholar]
- Ilbert, O., Arnouts, S., McCracken, H. J., et al. 2006, A&A, 457, 841 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Ilbert, O., Capak, P., Salvato, M., et al. 2008, ApJ, 690, 1236 [Google Scholar]
- Kartaltepe, J. S., Rose, C., Vanderhoof, B. N., et al. 2023, ApJ, 946, L15 [NASA ADS] [CrossRef] [Google Scholar]
- Koekemoer, A. M., Fruchter, A. S., Hook, R. N., & Hack, W. 2003, in HST Calibration Workshop : Hubble after the Installation of the ACS and the NICMOS Cooling System, 337 [Google Scholar]
- Koekemoer, A. M., Aussel, H., Calzetti, D., et al. 2007, ApJS, 172, 196 [Google Scholar]
- Linderman, G. C., & Steinerberger, S. 2019, SIAM J. Math. Data Sci., 1, 313 [CrossRef] [Google Scholar]
- Liu, Z., Lin, Y., Cao, Y., et al. 2021, in 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 9992 [CrossRef] [Google Scholar]
- Liu, Z., Mao, H., Wu, C.-Y., et al. 2022, in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 11966 [CrossRef] [Google Scholar]
- Liu, Z., Zhang, F., Cheng, L., et al. 2023, arXiv e-prints [arXiv:2311.08995] [Google Scholar]
- Lotz, J. M., Primack, J., & Madau, P. 2004, AJ, 128, 163 [NASA ADS] [CrossRef] [Google Scholar]
- Lotz, J. M., Davis, M., Faber, S. M., et al. 2008, ApJ, 672, 177 [NASA ADS] [CrossRef] [Google Scholar]
- Masci, J., Meier, U., Ciresan, D., & Schmidhuber, J. 2011, in Artificial Neural Networks and Machine Learning – ICANN 2011, eds. T. Honkela, W. Duch, M. Girolami, & S. Kaski (Berlin, Heidelberg: Springer), 52 [CrossRef] [Google Scholar]
- Maćkiewicz, A., & Ratajczak, W. 1993, Comp. Geosci., 19, 303 [CrossRef] [Google Scholar]
- Murtagh, F. 1983, Comp. J., 26, 354 [CrossRef] [Google Scholar]
- Murtagh, F., & Legendre, P. 2014, J. Class., 31, 274 [CrossRef] [Google Scholar]
- Ozbulak, U., Lee, H. J., Boga, B., et al. 2023, arXiv e-prints [arXiv:2305.13689] [Google Scholar]
- Paul, S., & Chen, P.-Y. 2022, Proc. AAAI Conf. Artif. Intell., 36, 2071 [Google Scholar]
- Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2002, AJ, 124, 266 [Google Scholar]
- Peng, K., Zhang, Y., Wang, X., et al. 2020, Computation Offloading in Mobile Edge Computing, eds. X. S. Shen, X. Lin, & K. Zhang (Cham: Springer International Publishing), 216 [Google Scholar]
- Peth, M. A., Lotz, J. M., Freeman, P. E., et al. 2016, MNRAS, 458, 963 [NASA ADS] [CrossRef] [Google Scholar]
- Ravindranath, S., Giavalisco, M., Ferguson, H. C., et al. 2006, ApJ, 652, 963 [NASA ADS] [CrossRef] [Google Scholar]
- Rodriguez-Gomez, V., Snyder, G. F., Lotz, J. M., et al. 2018, MNRAS, 483, 4140 [Google Scholar]
- Rosa, R. R., de Carvalho, R. R., Sautter, R. A., et al. 2018, MNRAS, 477, L101 [CrossRef] [Google Scholar]
- Schmarje, L., Santarossa, M., Schroder, S.-M., & Koch, R. 2021, IEEE Access, 9, 82146 [Google Scholar]
- Scoville, N., Aussel, H., Brusa, M., et al. 2007, ApJS, 172, 1 [Google Scholar]
- Song, J., Fang, G., Ba, S., et al. 2024, ApJS, 272, 42 [NASA ADS] [CrossRef] [Google Scholar]
- Sreejith, S., Pereverzyev Jr, S., Kelvin, L. S., et al. 2017, MNRAS, 474, 5232 [Google Scholar]
- Stoughton, C., Lupton, R. H., Bernardi, M., et al. 2002, AJ, 123, 485 [Google Scholar]
- Tohill, C., Bamford, S. P., Conselice, C. J., et al. 2024, AJ, 962, 164 [NASA ADS] [Google Scholar]
- van der Maaten, L., & Hinton, G. 2008, J. Mach. Learn. Res., 9, 2579 [Google Scholar]
- Van Gansbeke, W., Vandenhende, S., Georgoulis, S., Proesmans, M., & Van Gool, L. 2020, in Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part X (Berlin, Heidelberg: Springer-Verlag), 268 [CrossRef] [Google Scholar]
- Vega-Ferrero, J., Domínguez Sánchez, H., Bernardi, M., et al. 2021, MNRAS, 506, 1927 [NASA ADS] [CrossRef] [Google Scholar]
- Weaver, J. R., Kauffmann, O. B., Ilbert, O., et al. 2022, ApJS, 258, 11 [NASA ADS] [CrossRef] [Google Scholar]
- Willett, K. W., Lintott, C. J., Bamford, S. P., et al. 2013, MNRAS, 435, 2835 [Google Scholar]
- Yao, Y., Song, J., Kong, X., et al. 2023, AJ, 954, 113 [Google Scholar]
- Zhang, T., Ramakrishnan, R., & Livny, M. 1996, in Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, SIGMOD ’96 (New York, NY, USA: Association for Computing Machinery), 103 [Google Scholar]
- Zhou, C., Gu, Y., Fang, G., & Lin, Z. 2022, AJ, 163, 86 [NASA ADS] [CrossRef] [Google Scholar]
- Zhu, X.-P., Dai, J.-M., Bian, C.-J., et al. 2019, Ap&SS, 364 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.