Open Access
Issue |
A&A
Volume 693, January 2025
|
|
---|---|---|
Article Number | A105 | |
Number of page(s) | 14 | |
Section | Numerical methods and codes | |
DOI | https://doi.org/10.1051/0004-6361/202348581 | |
Published online | 09 January 2025 |
- Abell, P. A., Allison, J., Anderson, S. F., et al. 2009, arXiv e-prints [arXiv:0912.0201] [Google Scholar]
- Acero-Cuellar, T., Bianco, F., Dobler, G., et al. 2022, AJ, 166, 115 [Google Scholar]
- Ayyar, V., Knop Jr, R., Awbrey, A., et al. 2022, arXiv e-prints [arXiv:2203.09908] [Google Scholar]
- Bailey, S., Aragon, C., Romano, R., et al. 2007, AJ, 665, 1246 [NASA ADS] [Google Scholar]
- Bellm, E. C., Kulkarni, S. R., Graham, M. J., et al. 2018, PASP, 131, 018002 [Google Scholar]
- Bennett, K., & Demiriz, A. 1998, NeurIPS, 11 [Google Scholar]
- Bertin E. (2010) SWarp: resampling and co-adding FITS images together[J]. Astrophysics Source Code Library: [record ascl:1010.068] [Google Scholar]
- Bertin, E., & Arnouts, S. 1996, ApJS, 117, 393 [Google Scholar]
- Brink, H., Richards, J. W., Poznanski, D., et al. 2013, MNRAS, 435, 1047 [NASA ADS] [CrossRef] [Google Scholar]
- Cabrera-Vives, G., Reyes, I., Förster, F., et al. 2017, AJ, 836, 97 [NASA ADS] [Google Scholar]
- Cavanagh, M. K., Bekki, K., & Groves, B. A. 2021, MNRAS, 506, 659 [NASA ADS] [CrossRef] [Google Scholar]
- Chambers, K. C., Magnier, E. A., Metcalfe, N., et al. 2016, arXiv e-prints [arXiv:1612.05560] [Google Scholar]
- Chapelle, O., Scholkopf, B., & Zien, A. 2009, IEEE Trans. Neural Netw., 20, 542 [Google Scholar]
- Dark Energy Survey Collaboration 2005, Int. J. Mod. Phys. A, 20, 3121 [CrossRef] [Google Scholar]
- Duev, D. A., Mahabal, A., Masci, F. J., et al. 2019, MNRAS, 489, 3582 [NASA ADS] [CrossRef] [Google Scholar]
- Förster, F., Maureira, J. C., San Martín, J., et al. 2016, AJ, 832, 155 [Google Scholar]
- Goldstein, D. A., D’Andrea, C. B., Fischer, J. A., et al. 2015, AJ, 150, 82 [Google Scholar]
- Gomez, C., Neira, M., Hernández Hoyos, M., et al. 2017, MNRAS, 499, 3130 [Google Scholar]
- Goode, S., Cooke, J., Zhang, J., et al. 2022, MNRAS, 513, 1742 [NASA ADS] [CrossRef] [Google Scholar]
- He, K., Zhang, X., Ren, S., & Sun, J. 2016, arXiv e-prints [arXiv:1512.03385] [Google Scholar]
- He, K., Gkioxari, G., Dollár, P., & Girshick, R. 2017, arXiv e-prints [arXiv:1703.06870] [Google Scholar]
- Hosenie, Z., Bloemen, S., Groot, P., et al. 2021, Exp. Astron., 51, 319 [CrossRef] [Google Scholar]
- Hu, M., Hu, L., Jiang, J., et al. 2022, Universe, 9, 7 [NASA ADS] [CrossRef] [Google Scholar]
- Joachims, T. 1999, ICML, 99, 200 [Google Scholar]
- Killestein, T. L., Lyman, J., Steeghs, D., et al. 2021, MNRAS, 503, 4838 [NASA ADS] [CrossRef] [Google Scholar]
- LeCun, Y., Boser, B., Denker, J. S. 1989, Neural Comput., 1, 541 [NASA ADS] [CrossRef] [Google Scholar]
- Makhlouf, K., Turpin, D., Corre, D., et al. 2022, A&A 664, A81 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Morii, M., Ikeda, S., Tominaga, N., et al. 2016, PASJ, 68, 104 [NASA ADS] [CrossRef] [Google Scholar]
- Paszke, A., Gross, S., Chintala, S., et al. 2017, Automatic differentiation in pytorch, 31st Conference on Neural Information Processing Systems (NIPS 2017) [Google Scholar]
- Prince, M. 2004, J. Eng. Educ., 93, 223 [CrossRef] [Google Scholar]
- Ren, S., He, K., Girshick, R., & Sun, J. 2015, arXiv e-prints [arXiv: 1506.01497] [Google Scholar]
- Reyes, E., Estévez, P. A., Reyes, I., et al. 2018, arXiv e-prints [arXiv: 1808.03626] [Google Scholar]
- Reyes-Jainaga, I., Förster, F., Muñoz Arancibia, A. M., et al. 2023, ApJ, 952, L43 [NASA ADS] [CrossRef] [Google Scholar]
- Sedaghat, N., & Mahabal, A. 2017, arXiv e-prints [arXiv:1710.01422] [Google Scholar]
- Settles, B. 2009, Active learning literature survey, Tech. Rep., TR1648 [Google Scholar]
- Turpin, D., Ganet, M., Antier, S., et al. 2020, MNRAS, 497, 2641 [NASA ADS] [CrossRef] [Google Scholar]
- Wang, T., Liu, G., and Cai, Z., et al. 2023, Sci.China Phys. Mech., 66, 109512 [CrossRef] [Google Scholar]
- Wright, D. E., Smartt, S. J., Smith, K. W., et al. 2015, MNRAS, 449, 451 [NASA ADS] [CrossRef] [Google Scholar]
- Wright, D. E., Lintott, C. J., Smartt, S. J., et al. 2017, MNRAS, 472, 1315 [CrossRef] [Google Scholar]
- Yang, Z., Cohen, W., & Salakhudinov, R. 2016, Proc. Mach. Learn. Res., 48, 40 [NASA ADS] [Google Scholar]
- Zhu, X. J. 2005, Semi-supervised learning literature survey, Tech. Rep. 1530, Computer Science, University of Wisconsin-Madison, USA [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.