Open Access

This article has an erratum: [https://doi.org/10.1051/0004-6361/202555687e]


Issue
A&A
Volume 691, November 2024
Article Number A360
Number of page(s) 18
Section Extragalactic astronomy
DOI https://doi.org/10.1051/0004-6361/202451429
Published online 26 November 2024
  1. Ascher, U. M., & Petzold, L. R. 1998, Computer Methods for Ordinary Differential Equations and Differential-algebraic Equations [CrossRef] [Google Scholar]
  2. Astropy Collaboration (Price-Whelan, A. M., et al.) 2022, ApJ, 935, 167 [NASA ADS] [CrossRef] [Google Scholar]
  3. Bastien, D. J., Scaife, A. M. M., Tang, H., Bowles, M., & Porter, F. 2021, MNRAS, 503, 3351 [NASA ADS] [CrossRef] [Google Scholar]
  4. Becker, R. H., White, R. L., & Helfand, D. J. 1995, ApJ, 450, 559 [Google Scholar]
  5. Bonaldi, A., An, T., Brüggen, M., et al. 2021, MNRAS, 500, 3821 [Google Scholar]
  6. Box, G. E. P., & Cox, D. R. 1964, J. Royal Stat. Soc. Ser. B (Methodological), 26, 211 [Google Scholar]
  7. Boyce, M. M., Hopkins, A. M., Riggi, S., et al. 2023a, PASA, 40, e028 [NASA ADS] [CrossRef] [Google Scholar]
  8. Boyce, M. M., Hopkins, A. M., Riggi, S., et al. 2023b, PASA, 40, e027 [NASA ADS] [CrossRef] [Google Scholar]
  9. Chen, S., & Schwarz, D. J. 2016, A&A, 591, A135 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  10. Dhariwal, P., & Nichol, A. 2021, Adv. Neural Inf. Process. Syst., 34, 8780 [Google Scholar]
  11. Drozdova, M., Kinakh, V., Bait, O., et al. 2024, A&A, 683, A105 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  12. Edler, H. W., de Gasperin, F., & Rafferty, D. 2021, A&A, 652, A37 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  13. Fanaroff, B. L., & Riley, J. M. 1974, MNRAS, 167, 31P [Google Scholar]
  14. Garsden, H., Girard, J. N., Starck, J. L., et al. 2015, A&A, 575, A90 [CrossRef] [EDP Sciences] [Google Scholar]
  15. Geyer, F., Schmidt, K., Kummer, J., et al. 2023, A&A, 677, A167 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  16. Griese, F., Kummer, J., Connor, P. L., Brüggen, M., & Rustige, L. 2023, Data in Brief, 47, 108974 [NASA ADS] [CrossRef] [Google Scholar]
  17. Hardcastle, M. J., Horton, M. A., Williams, W. L., et al. 2023, A&A, 678, A151 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  18. He, K., Zhang, X., Ren, S., & Sun, J. 2016, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 770 [Google Scholar]
  19. Hendrycks, D., & Gimpel, K. 2016, ArXiv e-prints [arXiv:1606.08415] [Google Scholar]
  20. Ho, J., & Salimans, T. 2022, ArXiv e-prints [arXiv:2207.12598] [Google Scholar]
  21. Ho, J., Jain, A., & Abbeel, P. 2020, Adv. Neural Inf. Process. Syst., 33, 6840 [Google Scholar]
  22. Karras, T., Aittala, M., Aila, T., & Laine, S. 2022, Adv. Neural Inf. Process. Syst., 35, 26565 [Google Scholar]
  23. Karras, T., Aittala, M., Lehtinen, J., et al. 2024, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 24174 [Google Scholar]
  24. Kingma, D. P., & Ba, J. 2014, ArXiv e-prints [arXiv:1412.6980] [Google Scholar]
  25. Lei Ba, J., Kiros, J. R., & Hinton, G. E. 2016, ArXiv e-prints [arXiv:1607.06450] [Google Scholar]
  26. Mesarcik, M., Boonstra, A.-J., Meijer, C., et al. 2020, MNRAS, 496, 1517 [CrossRef] [Google Scholar]
  27. Mohan, N., & Rafferty, D. 2015, Astrophysics Source Code Library [record ascl:1502.007] [Google Scholar]
  28. Pearson, K. 1901, Lond. Edin. Dublin Phil. Mag. J. Sci., 2, 559 [Google Scholar]
  29. Perez, E., Strub, F., De Vries, H., Dumoulin, V., & Courville, A. 2018, in Proceedings of the AAAI Conference on Artificial Intelligence, 32 [Google Scholar]
  30. Reddy, P., Toomey, M. W., Parul, H., & Gleyzer, S. 2024, Mach. Learn. Sci. Technol., 5, 035076 [Google Scholar]
  31. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. 2022, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 10684 [Google Scholar]
  32. Ronneberger, O., Fischer, P., & Brox, T. 2015, in Medical Image Computing and Computer-assisted Intervention-MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18 (Springer), 234 [Google Scholar]
  33. Rustige, L., Kummer, J., Griese, F., et al. 2023, RAS Tech. Instrum., 2, 264 [NASA ADS] [CrossRef] [Google Scholar]
  34. Shen, Z., Zhang, M., Zhao, H., Yi, S., & Li, H. 2021, in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 3531 [Google Scholar]
  35. Shimwell, T. W., Röttgering, H. J. A., Best, P. N., et al. 2017, A&A, 598, A104 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  36. Shimwell, T. W., Hardcastle, M. J., Tasse, C., et al. 2022, A&A, 659, A1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  37. Smith, M. J., & Geach, J. E. 2023, Royal Soc. Open Sci., 10, 221454 [NASA ADS] [CrossRef] [Google Scholar]
  38. Smith, M. J., Geach, J. E., Jackson, R. A., et al. 2022, MNRAS, 511, 1808 [CrossRef] [Google Scholar]
  39. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., & Ganguli, S. 2015, in International Conference on Machine Learning, PMLR, 2256 [Google Scholar]
  40. Song, Y., Sohl-Dickstein, J., Kingma, D. P., et al. 2020, ArXiv e-prints [arXiv:2011.13456] [Google Scholar]
  41. Song, Y., Dhariwal, P., Chen, M., & Sutskever, I. 2023, ArXiv e-prints [arXiv:2303.01469] [Google Scholar]
  42. Sortino, R., Cecconello, T., DeMarco, A., et al. 2024, IEEE Transactions on Artificial Intelligence [Google Scholar]
  43. Vaswani, A., Shazeer, N., Parmar, N., et al. 2017, Advances in Neural Information Processing Systems [Google Scholar]
  44. Waldmann, I., Rocchetto, M., & Debczynski, M. 2023, in Proceedings of the Advanced Maui Optical and Space Surveillance (AMOS) Technologies Conference, ed. S. Ryan, 196 [Google Scholar]
  45. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. 2004, IEEE Trans. Image Process., 13, 600 [Google Scholar]
  46. Wang, R., Chen, Z., Luo, Q., & Wang, F. 2023, in ECAI, 2499 [Google Scholar]
  47. Wilman, R. J., Miller, L., Jarvis, M. J., et al. 2008, MNRAS, 388, 1335 [NASA ADS] [Google Scholar]
  48. Wu, Y., & He, K. 2018, in Proceedings of the European Conference on Computer Vision (ECCV), 3 [Google Scholar]
  49. Yatawatta, S., & Avruch, I. M. 2021, MNRAS, 505, 2141 [NASA ADS] [CrossRef] [Google Scholar]
  50. Zhang, Y., & Zhao, Y. 2015, Data Sci. J., 14, 11 [NASA ADS] [CrossRef] [Google Scholar]
  51. Zhao, X., Ting, Y.-S., Diao, K., & Mao, Y. 2023, MNRAS, 526, 1699 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.