Open Access
Issue
A&A
Volume 684, April 2024
Article Number A100
Number of page(s) 13
Section Cosmology (including clusters of galaxies)
DOI https://doi.org/10.1051/0004-6361/202347929
Published online 11 April 2024
  1. Abadi, M., Agarwal, A., Barham, P., et al. 2016, arXiv e-prints [arXiv:1603.04467] [Google Scholar]
  2. Abdar, M., Pourpanah, F., Hussain, S., et al. 2021, Inf. Fusion, 76, 243 [CrossRef] [Google Scholar]
  3. Alves de Oliveira, R., Li, Y., Villaescusa-Navarro, F., Ho, S., & Spergel, D. N. 2020, ArXiv e-prints [arXiv:2012.00240] [Google Scholar]
  4. Beaumont, M. A. 2010, Annu. Rev. Ecol. Evol. Syst., 41, 379 [Google Scholar]
  5. Berti, E., Barausse, E., Cardoso, V., et al. 2015, Class. Quant. Grav., 32, 243001 [NASA ADS] [CrossRef] [Google Scholar]
  6. Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. 2015, Proceedings of the 32nd International Conference on International Conference on Machine Learning – Volume 37, ICML’15 (JMLR), 1613 [Google Scholar]
  7. Bos, E. G. P., van de Weygaert, R., Dolag, K., & Pettorino, V. 2012, MNRAS, 426, 440 [NASA ADS] [CrossRef] [Google Scholar]
  8. Brown, Z., Mishtaku, G., & Demina, R. 2022, A&A, 667, A129 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  9. Cai, Y.-C., Padilla, N., & Li, B. 2015, MNRAS, 451, 1036 [NASA ADS] [CrossRef] [Google Scholar]
  10. Charnock, T., Perreault-Levasseur, L., & Lanusse, F. 2022, Bayesian Neural Networks (World Scientific), 663 [Google Scholar]
  11. Contarini, S., Marulli, F., Moscardini, L., et al. 2021, MNRAS, 504, 5021 [NASA ADS] [CrossRef] [Google Scholar]
  12. Crocce, M., Pueblas, S., & Scoccimarro, R. 2006, MNRAS, 373, 369 [NASA ADS] [CrossRef] [Google Scholar]
  13. Crocce, M., Pueblas, S., & Scoccimarro, R. 2012, Astrophysics Source Code Library [record ascl:1201.005] [Google Scholar]
  14. Csilléry, K., Blum, M. G., Gaggiotti, O. E., & François, O. 2010, Trends Ecol. Evol., 25, 410 [CrossRef] [Google Scholar]
  15. De Felice, A., & Tsujikawa, S. 2010, Liv. Rev. Relat., 13, 3 [NASA ADS] [CrossRef] [Google Scholar]
  16. Deng, W., Zhang, X., Liang, F., & Lin, G. 2019, Bayesian Deep Learning via Stochastic Gradient MCMC with a Stochastic Approximation Adaptation, https://openreview.net/forum?id=S1grRoR9tQ [Google Scholar]
  17. Denker, J. S., & LeCun, Y. 1990, Proceedings of the 3rd International Conference on Neural Information Processing Systems, NIPS’90 (San Francisco: Morgan Kaufmann Publishers Inc.), 853 [Google Scholar]
  18. Dinh, L., Sohl-Dickstein, J., & Bengio, S. 2017, International Conference on Learning Representations, https://openreview.net/forum?id=HkpbnH9lx [Google Scholar]
  19. Dong, F., Park, C., Hong, S. E., et al. 2023, ApJ, 953, 98 [NASA ADS] [CrossRef] [Google Scholar]
  20. Dvorkin, C., Mishra-Sharma, S., Nord, B., et al. 2022, ArXiv e-prints [arXiv:2203.08056] [Google Scholar]
  21. Fang, W., Li, B., & Zhao, G.-B. 2017, Phys. Rev. Lett., 118, 181301 [NASA ADS] [CrossRef] [Google Scholar]
  22. Fiedler, F., & Lucia, S. 2023, IEEE Access, 11, 123149 [NASA ADS] [CrossRef] [Google Scholar]
  23. Fluri, J., Kacprzak, T., Sgier, R., Refregier, A., & Amara, A. 2018, JCAP, 2018, 051 [CrossRef] [Google Scholar]
  24. Fortuin, V., Garriga-Alonso, A., Ober, S. W., et al. 2021, ArXiv e-prints [arXiv:2102.06571] [Google Scholar]
  25. Gal, Y. 2016, PhD Thesis, University of Cambridge, UK [Google Scholar]
  26. Gal, Y., & Ghahramani, Z. 2016, in Proceedings of the 33rd International Conference on Machine Learning, eds. M. F. Balcan, & K. Q. Weinberger (New York: PMLR), Proc. Mach. Learn. Res., 48, 1050 [Google Scholar]
  27. García-Farieta, J. E., Marulli, F., Veropalumbo, A., et al. 2019, MNRAS, 488, 1987 [Google Scholar]
  28. García-Farieta, J. E., Marulli, F., Moscardini, L., Veropalumbo, A., & Casas-Miranda, R. A. 2020, MNRAS, 494, 1658 [CrossRef] [Google Scholar]
  29. García-Farieta, J. E., Hellwing, W. A., Gupta, S., & Bilicki, M. 2021, Phys. Rev. D, 103, 103524 [CrossRef] [Google Scholar]
  30. Graves, A. 2011, Practical Variational Inference for Neural Networks (Curran Associates, Inc.), 24 [Google Scholar]
  31. Gunapati, G., Jain, A., Srijith, P. K., & Desai, S. 2022, PASA, 39, e001 [NASA ADS] [CrossRef] [Google Scholar]
  32. Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. 2017, Proceedings of the 34th International Conference on Machine Learning – Volume 70, ICML’17 (JMLR), 1321 [Google Scholar]
  33. Gupta, S., Hellwing, W. A., Bilicki, M., & García-Farieta, J. E. 2022, Phys. Rev. D, 105, 043538 [NASA ADS] [CrossRef] [Google Scholar]
  34. Hagstotz, S., Costanzi, M., Baldi, M., & Weller, J. 2019, MNRAS, 486, 3927 [Google Scholar]
  35. Hahn, C., Eickenberg, M., Ho, S., et al. 2022, ArXiv e-prints [arXiv:2211.00723] [Google Scholar]
  36. Hamaus, N., Pisani, A., Sutter, P. M., et al. 2016, Phys. Rev. Lett., 117, 091302 [NASA ADS] [CrossRef] [Google Scholar]
  37. Harnois-Déraps, J., Martinet, N., Castro, T., et al. 2021, MNRAS, 506, 1623 [CrossRef] [Google Scholar]
  38. Henning, C., D’Angelo, F., & Grewe, B. F. 2021, ArXiv e-prints [arXiv:2107.12248] [Google Scholar]
  39. Hernández-Aguayo, C., Hou, J., Li, B., Baugh, C. M., & Sánchez, A. G. 2019, MNRAS, 485, 2194 [CrossRef] [Google Scholar]
  40. Hernández-Aguayo, C., Ruan, C.-Z., Li, B., et al. 2022, JCAP, 2022, 048 [CrossRef] [Google Scholar]
  41. Hikage, C., Schmalzing, J., Buchert, T., et al. 2003, PASJ, 55, 911 [NASA ADS] [Google Scholar]
  42. Hockney, R. W., & Eastwood, J. W. 1981, Computer Simulation Using Particles (New York: McGraw-Hill) [Google Scholar]
  43. Hortua, H. J. 2021, ArXiv e-prints [arXiv:2112.11865] [Google Scholar]
  44. Hortúa, H. J., Volpi, R., Marinelli, D., & Malagò, L. 2020a, Phys. Rev. D, 102, 103509 [CrossRef] [Google Scholar]
  45. Hortúa, H. J., Malagò, L., & Volpi, R. 2020b, Mach. Learn.: Sci. Technol., 1, 035014 [CrossRef] [Google Scholar]
  46. Hortúa, H. J., García, L., & Castaneda, L. 2023, Front. Astron. Space Sci., 10, 1139120 [CrossRef] [Google Scholar]
  47. Howlett, C., Manera, M., & Percival, W. J. 2015, Astron. Comput., 12, 109 [NASA ADS] [CrossRef] [Google Scholar]
  48. Hu, W., & Sawicki, I. 2007, Phys. Rev. D, 76, 064004 [CrossRef] [Google Scholar]
  49. Hu, J., Shen, L., Albanie, S., Sun, G., & Wu, E. 2017, ArXiv e-prints [arXiv:1709.01507] [Google Scholar]
  50. Ivarsen, M. F., Bull, P., Llinares, C., & Mota, D. 2016, A&A, 595, A40 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  51. Jennings, E., Baugh, C. M., Li, B., Zhao, G.-B., & Koyama, K. 2012, MNRAS, 425, 2128 [NASA ADS] [CrossRef] [Google Scholar]
  52. Johnson, A., Blake, C., Dossett, J., et al. 2016, MNRAS, 458, 2725 [NASA ADS] [CrossRef] [Google Scholar]
  53. Kacprzak, T., Kirk, D., Friedrich, O., et al. 2016, MNRAS, 463, 3653 [Google Scholar]
  54. Kilbinger, M. 2015, Rep. Progr. Phys., 78, 086901 [Google Scholar]
  55. Kingma, D. P., & Ba, J. 2014, ArXiv e-prints [arXiv:1412.6980] [Google Scholar]
  56. Kitaura, F.-S., Ata, M., Rodríguez-Torres, S. A., et al. 2021, MNRAS, 502, 3456 [NASA ADS] [CrossRef] [Google Scholar]
  57. Koda, J., Blake, C., Beutler, F., Kazin, E., & Marin, F. 2016, MNRAS, 459, 2118 [NASA ADS] [CrossRef] [Google Scholar]
  58. Kodi Ramanah, D., Charnock, T., Villaescusa-Navarro, F., & Wandelt, B. D. 2020, MNRAS, 495, 4227 [NASA ADS] [CrossRef] [Google Scholar]
  59. Kostić, A., Nguyen, N.-M., Schmidt, F., & Reinecke, M. 2023, JCAP, 2023, 063 [Google Scholar]
  60. Kratochvil, J. M., Lim, E. A., Wang, S., et al. 2012, Phys. Rev. D, 85, 103513 [Google Scholar]
  61. Lakshminarayanan, B., Pritzel, A., & Blundell, C. 2017, Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17 (Red Hook: Curran Associates Inc.), 6405 [Google Scholar]
  62. Laszlo, I., & Bean, R. 2008, Phys. Rev. D, 77, 024048 [CrossRef] [Google Scholar]
  63. Lavaux, G., & Wandelt, B. D. 2010, MNRAS, 403, 1392 [NASA ADS] [CrossRef] [Google Scholar]
  64. Laves, M. H., Ihler, S., Fast, J. F., Kahrs, L. A., & Ortmaier, T. 2020, Medical Imaging with Deep Learning, https://openreview.net/forum?id=CecZ_0t79q [Google Scholar]
  65. Lazanu, A. 2021, JCAP, 2021, 039 [CrossRef] [Google Scholar]
  66. Lemos, P., Cranmer, M., Abidi, M., et al. 2023a, Mach. Learn.: Sci. Technol., 4, 01LT01 [NASA ADS] [CrossRef] [Google Scholar]
  67. Lemos, P., Parker, L. H., Hahn, C., et al. 2023b, Machine Learning for Astrophysics, Workshop at the Fortieth International Conference on Machine Learning (ICML 2023), July 29th, Hawaii, USA, online at https://ml4astro.github.io/icml2023/, 18 [Google Scholar]
  68. Lewis, A. 2019, ArXiv e-prints [arXiv:1910.13970] [Google Scholar]
  69. Li, B., Zhao, G.-B., Teyssier, R., & Koyama, K. 2012, JCAP, 2012, 051 [CrossRef] [Google Scholar]
  70. Li, X.-D., Park, C., Sabiu, C. G., & Kim, J. 2015, MNRAS, 450, 807 [NASA ADS] [CrossRef] [Google Scholar]
  71. Louizos, C., & Welling, M. 2017, Proceedings of the 34th International Conference on Machine Learning – Volume 70, ICML’17 (JMLR), 2218 [Google Scholar]
  72. Luo, X., Wu, Z., Li, M., et al. 2019, ApJ, 887, 125 [NASA ADS] [CrossRef] [Google Scholar]
  73. Lyall, S., Blake, C., Turner, R., Ruggeri, R., & Winther, H. 2023, MNRAS, 518, 5929 [Google Scholar]
  74. Mancarella, M., Kennedy, J., Bose, B., & Lombriser, L. 2022, Phys. Rev. D, 105, 023531 [NASA ADS] [CrossRef] [Google Scholar]
  75. McCarthy, I. G., Salcido, J., Schaye, J., et al. 2023, MNRAS, 526, 5494 [NASA ADS] [CrossRef] [Google Scholar]
  76. Merten, J., Giocoli, C., Baldi, M., et al. 2019, MNRAS, 487, 104 [Google Scholar]
  77. Moresco, M., Amati, L., Amendola, L., et al. 2022, Liv. Rev. Relat., 25, 6 [NASA ADS] [Google Scholar]
  78. Nguyen, N.-M., Huterer, D., & Wen, Y. 2023, Phys. Rev. Lett., 131, 111001 [CrossRef] [Google Scholar]
  79. Nojiri, S., Odintsov, S. D., & Oikonomou, V. K. 2017, Phys. Rep., 692, 1 [NASA ADS] [CrossRef] [Google Scholar]
  80. Odintsov, S. D., Oikonomou, V. K., Giannakoudi, I., Fronimos, F. P., & Lymperiadou, E. C. 2023, Symmetry, 15, 1701 [NASA ADS] [CrossRef] [Google Scholar]
  81. Paillas, E., Cai, Y.-C., Padilla, N., & Sánchez, A. G. 2021, MNRAS, 505, 5731 [NASA ADS] [CrossRef] [Google Scholar]
  82. Pan, S., Liu, M., Forero-Romero, J., et al. 2020, Sci. China Phys. Mech. Astron., 63, 110412 [NASA ADS] [CrossRef] [Google Scholar]
  83. Park, C., & Kim, Y.-R. 2010, ApJ, 715, L185 [NASA ADS] [CrossRef] [Google Scholar]
  84. Peebles, P. J. E. 2001, in Historical Development of Modern Cosmology, eds. V. J. Martínez, V. Trimble, & M. J. Pons-Bordería, ASP Conf. Ser., 252, 201 [NASA ADS] [Google Scholar]
  85. Peel, A., Lin, C.-A., Lanusse, F., et al. 2017, A&A, 599, A79 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  86. Peel, A., Lalande, F., Starck, J.-L., et al. 2019, Phys. Rev. D, 100, 023508 [Google Scholar]
  87. Perico, E. L. D., Voivodic, R., Lima, M., & Mota, D. F. 2019, A&A, 632, A52 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  88. Philcox, O. H. E., Slepian, Z., Hou, J., et al. 2022, MNRAS, 509, 2457 [Google Scholar]
  89. Planck Collaboration VI. 2020, A&A, 641, A6 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  90. Puchwein, E., Baldi, M., & Springel, V. 2013, MNRAS, 436, 348 [NASA ADS] [CrossRef] [Google Scholar]
  91. Ravanbakhsh, S., Oliva, J., Fromenteau, S., et al. 2017, ArXiv e-prints [arXiv:1711.02033] [Google Scholar]
  92. Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K., & Winther, O. 2016, Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS’16 (Red Hook: Curran Associates Inc.), 3745 [Google Scholar]
  93. Song, Y.-S., Hu, W., & Sawicki, I. 2007, Phys. Rev. D, 75, 044004 [CrossRef] [Google Scholar]
  94. Sunnåker, M., Busetto, A. G., Numminen, E., et al. 2013, PLOS Comput. Biol., 9, 1 [Google Scholar]
  95. Takada, M., & Jain, B. 2003, MNRAS, 340, 580 [NASA ADS] [CrossRef] [Google Scholar]
  96. Tamosiunas, A., Winther, H. A., Koyama, K., et al. 2021, MNRAS, 506, 3049 [NASA ADS] [CrossRef] [Google Scholar]
  97. Tassev, S., Zaldarriaga, M., & Eisenstein, D. J. 2013, JCAP, 2013, 036 [Google Scholar]
  98. Thomas, O., Dutta, R., Corander, J., Kaski, S., & Gutmann, M. U. 2016, ArXiv e-prints [arXiv:1611.10242] [Google Scholar]
  99. Touati, A., Satija, H., Romoff, J., Pineau, J., & Vincent, P. 2018, ArXiv e-prints [arXiv:1806.02315] [Google Scholar]
  100. Tsujikawa, S. 2008, Phys. Rev. D, 77, 023507 [NASA ADS] [CrossRef] [Google Scholar]
  101. Tsujikawa, S., Uddin, K., Mizuno, S., Tavakol, R., & Yokoyama, J. 2008, Phys. Rev. D, 77, 103009 [NASA ADS] [CrossRef] [Google Scholar]
  102. Van Waerbeke, L., Mellier, Y., Radovich, M., et al. 2001, A&A, 374, 757 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  103. Veropalumbo, A., Binetti, A., Branchini, E., et al. 2022, JCAP, 2022, 033 [CrossRef] [Google Scholar]
  104. Villaescusa-Navarro, F., Hahn, C., Massara, E., et al. 2020, ApJS, 250, 2 [CrossRef] [Google Scholar]
  105. Voivodic, R., Lima, M., Llinares, C., & Mota, D. F. 2017, Phys. Rev. D, 95, 024018 [CrossRef] [Google Scholar]
  106. Watson, J., Andreas Lin, J., Klink, P., Pajarinen, J., & Peters, J. 2021, in Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, eds. A. Banerjee, & K. Fukumizu (PMLR), Proc. Mach. Learn. Res., 130, 1198 [Google Scholar]
  107. Weinberg, D. H., Mortonson, M. J., Eisenstein, D. J., et al. 2013, Phys. Rep., 530, 87 [Google Scholar]
  108. Wen, Y., Vicol, P., Ba, J., Tran, D., & Grosse, R. 2018, International Conference on Learning Representations, https://openreview.net/forum?id=rJNpifWAb [Google Scholar]
  109. Winther, H. A., Koyama, K., Manera, M., Wright, B. S., & Zhao, G.-B. 2017, JCAP, 2017, 006 [CrossRef] [Google Scholar]
  110. Zhang, Z., Gu, G., Wang, X., et al. 2019, ApJ, 878, 137 [NASA ADS] [CrossRef] [Google Scholar]
  111. Zhang, H., Samushia, L., Brooks, D., et al. 2022, MNRAS, 515, 6133 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.