Open Access
Issue
A&A
Volume 677, September 2023
Article Number A59
Number of page(s) 59
Section Galactic structure, stellar clusters and populations
DOI https://doi.org/10.1051/0004-6361/202243690
Published online 06 September 2023
  1. Akaike, H. 1974, IEEE Trans. Autom. Control, 19, 716 [Google Scholar]
  2. Ankerst, M., Breunig, M. M., Kriegel, H.-P., & Sander, J. 1999, SIGMOD Rec., 28, 49 [CrossRef] [Google Scholar]
  3. Ashok Kumar, G. 2020, Int. J. Sci. Technol. Res., 9, 6 [Google Scholar]
  4. Astropy Collaboration (Robitaille, T. P., et al.) 2013, A&A, 558, A33 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  5. Astropy Collaboration (Price-Whelan, A. M., et al.) 2018, AJ, 156, 123 [Google Scholar]
  6. Azzalini, A., & Torelli, N. 2007, Stat. Comput., 17, 71 [CrossRef] [Google Scholar]
  7. Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Demleitner, M., & Andrae, R. 2021, AJ, 161, 147 [Google Scholar]
  8. Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. H. 1998, A&A, 337, 403 [Google Scholar]
  9. Baraffe, I., Homeier, D., Allard, F., & Chabrier, G. 2015, A&A, 577, A42 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  10. Beccari, G., Boffin, H. M. J., & Jerabkova, T. 2020, MNRAS, 491, 2205 [Google Scholar]
  11. Benjamini, Y., & Hochberg, Y. 1995, J. R. Stat. Soc. Ser. B (Methodological), 57, 289 [Google Scholar]
  12. Bentley, J. L. 1975, Commun. ACM, 18, 509 [CrossRef] [Google Scholar]
  13. Biau, G., Chazal, F., Cohen-Steiner, D., Devroye, L., & Rodríguez, C. 2011, Electron. J. Stat., 5, 204 [CrossRef] [Google Scholar]
  14. Blaauw, A. 1946, Publ. Kapteyn Astron. Lab. Groningen, 52, 1 [NASA ADS] [Google Scholar]
  15. Blaauw, A. 1952, Bull. Astron. Inst. Netherlands, 11, 414 [NASA ADS] [Google Scholar]
  16. Blaauw, A. 1964a, ARA&A, 2, 213 [Google Scholar]
  17. Blaauw, A. 1964b, in The Galaxy and the Magellanic Clouds, ed. F. J. Kerr 20, 50 [NASA ADS] [Google Scholar]
  18. Boch, T., & Fernique, P. 2014, in Astronomical Data Analysis Software and Systems XXIII, eds. N. Manset, & P. Forshay, ASP Conf. Ser., 485, 277 [NASA ADS] [Google Scholar]
  19. Bonferroni, C. 1936, Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze, 8, 3 [Google Scholar]
  20. Bonnarel, F., Fernique, P., Bienaymé, O., et al. 2000, A&AS, 143, 33 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  21. Bouvier, J., Matt, S. P., Mohanty, S., et al. 2014, in Protostars and Planets VI, eds. H. Beuther, R. S. Klessen, C. P. Dullemond, & T. Henning, 433 [Google Scholar]
  22. Bouy, H., & Alves, J. 2015, A&A, 584, A26 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  23. Bovy, J. 2015, ApJS, 216, 29 [NASA ADS] [CrossRef] [Google Scholar]
  24. Breitschwerdt, D., Feige, J., Schulreich, M. M., et al. 2016, Nature, 532, 73 [NASA ADS] [CrossRef] [Google Scholar]
  25. Bressan, A., Marigo, P., Girardi, L., et al. 2012, MNRAS, 427, 127 [NASA ADS] [CrossRef] [Google Scholar]
  26. Briceño-Morales, G., & Chanamé, J. 2023, MNRAS, 522, 1288 [CrossRef] [Google Scholar]
  27. Brodersen, K. H., Ong, C. S., Stephan, K. E., & Buhmann, J. M. 2010, in 2010 20th International Conference on Pattern Recognition, 2010, 3121 [CrossRef] [Google Scholar]
  28. Brooke, T. Y., Huard, T. L., Bourke, T. L., et al. 2007, ApJ, 655, 364 [NASA ADS] [CrossRef] [Google Scholar]
  29. Burman, P., & Nolan, D. 1992, J. Multivariate Anal., 40, 132 [CrossRef] [Google Scholar]
  30. Burman, P., & Polonik, W. 2009, J. Multivariate Anal., 100, 1198 [CrossRef] [Google Scholar]
  31. Burrows, A., Hubbard, W. B., Lunine, J. I., & Liebert, J. 2001, Rev. Modern Phys., 73, 719 [NASA ADS] [CrossRef] [Google Scholar]
  32. Caliński, T., & Harabasz, J. 1974, Commun. Stat., 3, 1 [Google Scholar]
  33. Campello, R. J., Moulavi, D., & Sander, J. 2013, in Pacific-Asia Conference on Knowledge Discovery and Data Mining (Springer), 160 [Google Scholar]
  34. Cantat-Gaudin, T., & Anders, F. 2020, A&A, 633, A99 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  35. Cantat-Gaudin, T., Jordi, C., Vallenari, A., et al. 2018a, A&A, 618, A93 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  36. Cantat-Gaudin, T., Vallenari, A., Sordo, R., et al. 2018b, A&A, 615, A49 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  37. Cantat-Gaudin, T., Mapelli, M., Balaguer-Núñez, L., et al. 2019a, A&A, 621, A115 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  38. Cantat-Gaudin, T., Krone-Martins, A., Sedaghat, N., et al. 2019b, A&A, 624, A126 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  39. Castro-Ginard, A., Jordi, C., Luri, X., et al. 2018, A&A, 618, A59 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  40. Castro-Ginard, A., Jordi, C., Luri, X., Cantat-Gaudin, T., & Balaguer-Núñez, L. 2019, A&A, 627, A35 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  41. Castro-Ginard, A., Jordi, C., Luri, X., et al. 2020, A&A, 635, A45 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  42. Castro-Ginard, A., Jordi, C., Luri, X., et al. 2022, A&A, 661, A118 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  43. Celeux, G., Forbes, F., Robert, C. P., & Titterington, D. M. 2006, Bayesian Anal., 1, 651 [Google Scholar]
  44. Celeux, G., Frühwirth-Schnatter, S., & Robert, C. P. 2019, Handbook of Mixture Analysis, Chapman& Hall/CRC Handbooks of Modern Statistical Methods (CRC Press), 117 [Google Scholar]
  45. Chaudhuri, K., & Dasgupta, S. 2010, in Advances in Neural Information Processing Systems, eds. J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, & A. Culotta (Curran Associates, Inc.), 23 [Google Scholar]
  46. Chaudhuri, K., Dasgupta, S., Kpotufe, S., & von Luxburg, U. 2014, IEEE Trans. Inf. Theor., 60, 7900 [CrossRef] [Google Scholar]
  47. Chazal, F., Guibas, L. J., Oudot, S. Y., & Skraba, P. 2013, J. ACM, 60 [CrossRef] [Google Scholar]
  48. Chen, B., D’Onghia, E., Alves, J., & Adamo, A. 2020, A&A, 643, A114 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  49. Cheng, Y. 1995, IEEE Trans. Pattern Analy. Mach. Intell., 17, 790 [CrossRef] [Google Scholar]
  50. Chen, Y., Girardi, L., Bressan, A., et al. 2014, MNRAS, 444, 2525 [Google Scholar]
  51. Chen, Y., Bressan, A., Girardi, L., et al. 2015, MNRAS, 452, 1068 [Google Scholar]
  52. Chronis, P., Athanasiou, S., & Skiadopoulos, S. 2019, in 2019 IEEE International Conference on Data Mining (ICDM), 91 [CrossRef] [Google Scholar]
  53. Comaniciu, D., & Meer, P. 2002, IEEE Trans. Pattern Anal. Mach. Intell., 24, 603 [CrossRef] [Google Scholar]
  54. Cornuéjols, A., Wemmert, C., Gançarski, P., & Bennani, Y. 2018, Inf. Fusion, 39, 81 [CrossRef] [Google Scholar]
  55. Coronado, J., Fürnkranz, V., & Rix, H.-W. 2022, ApJ, 928, 70 [NASA ADS] [CrossRef] [Google Scholar]
  56. Correa, C., & Lindstrom, P. 2011, IEEE Trans. Visual. Comput. Graphics, 17, 1852 [CrossRef] [Google Scholar]
  57. Crundall, T. D., Ireland, M. J., Krumholz, M. R., et al. 2019, MNRAS, 489, 3625 [Google Scholar]
  58. Damiani, F., Prisinzano, L., Pillitteri, I., Micela, G., & Sciortino, S. 2019, A&A, 623, A112 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  59. Dasgupta, S., & Kpotufe, S. 2014, in Advances in Neural Information Processing Systems, eds. Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, & K. Q. Weinberger (Curran Associates, Inc.), 27 [Google Scholar]
  60. de Bruijne, J. H. J. 1999, MNRAS, 310, 585 [NASA ADS] [CrossRef] [Google Scholar]
  61. de Geus, E. J. 1992, A&A, 262, 258 [NASA ADS] [Google Scholar]
  62. de Geus, E. J., de Zeeuw, P. T., & Lub, J. 1989, A&A, 216, 44 [NASA ADS] [Google Scholar]
  63. Dempster, A. P., Laird, N. M., & Rubin, D. B. 1977, J. R. Stat. Soc. Series B Stat. Methodol., 39, 1 [Google Scholar]
  64. de Zeeuw, P. T., Hoogerwerf, R., de Bruijne, J. H. J., Brown, A. G. A., & Blaauw, A. 1999, AJ, 117, 354 [Google Scholar]
  65. Diehl, R., Lang, M. G., Martin, P., et al. 2010, A&A, 522, A51 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  66. Dieterich, S. B., Henry, T. J., Jao, W.-C., et al. 2014, AJ, 147, 94 [NASA ADS] [CrossRef] [Google Scholar]
  67. Ding, J., Shah, S., & Condon, A. 2016, Bioinformatics, 32, 2567 [CrossRef] [Google Scholar]
  68. Dobbie, P. D., Lodieu, N., & Sharp, R. G. 2010, MNRAS, 409, 1002 [Google Scholar]
  69. Edelsbrunner, H., Letscher, D., & Zomorodian, A. 2000, in Proceedings 41st Annual Symposium on Foundations of Computer Science, 454 [CrossRef] [Google Scholar]
  70. Esplin, T. L., & Luhman, K. L. 2022, AJ, 163, 64 [NASA ADS] [CrossRef] [Google Scholar]
  71. Ester, M., Kriegel, H. P., Sander, J., & Xu, X. 1996, in Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD’96 (AAAI Press), 226 [Google Scholar]
  72. Evans, D. W., Riello, M., De Angeli, F., et al. 2018, A&A, 616, A4 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  73. Feigelson, E. D., & Montmerle, T. 1999, ARA&A, 37, 363 [Google Scholar]
  74. Feng, Y., & Hamerly, G. 2007, in Advances in Neural Information Processing Systems, eds. B. Schölkopf, J. Platt, & T. Hoffman, 19 (MIT Press) [Google Scholar]
  75. Fernández, D., Figueras, F., & Torra, J. 2008, A&A, 480, 735 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  76. Fisher, R. A. 1934, Breakthroughs in Statistics (Springer), 66 [Google Scholar]
  77. Forbes, J. C., Alves, J., & Lin, D. N. C. 2021, Nat. Astron., 5, 1009 [NASA ADS] [CrossRef] [Google Scholar]
  78. Francis, C., & Anderson, E. 2009, New A, 14, 615 [NASA ADS] [CrossRef] [Google Scholar]
  79. Freytag, B., Allard, F., Ludwig, H. G., Homeier, D., & Steffen, M. 2010, A&A, 513, A19 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  80. Freytag, B., Steffen, M., Ludwig, H. G., et al. 2012, J. Comput. Phys., 231, 919 [Google Scholar]
  81. Frühwirth-Schnatter, S., Celeux, G., & Robert, C. 2019, in Handbook of Mixture Analysis, Chapman& Hall/CRC Handbooks of Modern Statistical Methods (CRC Press) [Google Scholar]
  82. Fürnkranz, V., Meingast, S., & Alves, J. 2019, A&A, 624, L11 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  83. Gabriel, K. R., & Sokal, R. R. 1969, System. Biol., 18, 259 [Google Scholar]
  84. Gagné, J., & Faherty, J. K. 2018, ApJ, 862, 138 [Google Scholar]
  85. Gagné, J., Lafrenière, D., Doyon, R., Malo, L., & Artigau, É. 2014, ApJ, 783, 121 [Google Scholar]
  86. Gagné, J., Mamajek, E. E., Malo, L., et al. 2018a, ApJ, 856, 23 [Google Scholar]
  87. Gagné, J., Roy-Loubier, O., Faherty, J. K., Doyon, R., & Malo, L. 2018b, ApJ, 860, 43 [Google Scholar]
  88. Gagné, J., Faherty, J. K., & Mamajek, E. E. 2018c, ApJ, 865, 136 [Google Scholar]
  89. Gaia Collaboration (Brown, A. G. A., et al.) 2016, A&A, 595, A2 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  90. Gaia Collaboration (Brown, A. G. A., et al.) 2018, A&A, 616, A1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  91. Gaia Collaboration (Brown, A. G. A., et al.) 2021, A&A, 649, A1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  92. Gaia Collaboration (Vallenari, A., et al.) 2023a, A&A, 674, A1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  93. Gaia Collaboration (Arenou, F., et al.) 2023b, A&A, 674, A34 [CrossRef] [EDP Sciences] [Google Scholar]
  94. Galli, P. A. B., Joncour, I., & Moraux, E. 2018, MNRAS, 477, L50 [Google Scholar]
  95. Galli, P. A. B., Bouy, H., Olivares, J., et al. 2020a, A&A, 643, A148 [EDP Sciences] [Google Scholar]
  96. Galli, P. A. B., Bouy, H., Olivares, J., et al. 2020b, A&A, 634, A98 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  97. Galli, P. A. B., Bouy, H., Olivares, J., et al. 2021a, A&A, 654, A122 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  98. Galli, P. A. B., Bouy, H., Olivares, J., et al. 2021b, A&A, 646, A46 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  99. Ghrist, R. 2008, Bull. Am. Math. Soc., 45, 61 [Google Scholar]
  100. Goldman, B., Röser, S., Schilbach, E., Moór, A. C., & Henning, T. 2018, ApJ, 868, 32 [Google Scholar]
  101. Grasser, N., Ratzenböck, S., Alves, J., et al. 2021, A&A, 652, A2 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  102. Gritschneder, M., & Lin, D. N. C. 2012, ApJ, 754, L13 [NASA ADS] [CrossRef] [Google Scholar]
  103. Großschedl, J. E., Alves, J., Meingast, S., & Herbst-Kiss, G. 2021, A&A, 647, A91 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  104. Hamerly, G., & Elkan, C. 2004, in Advances in Neural Information Processing, eds. S. Thrun, L. Saul, & B. Schölkopf, 16 (MIT Press) [Google Scholar]
  105. Hartigan, J. A. 1975, Clustering Algorithms, 99th edn. (USA: John Wiley& Sons, Inc.) [Google Scholar]
  106. Hartigan, J. A., & Hartigan, P. M. 1985, Ann. Stat., 13, 70 [Google Scholar]
  107. He, Z., Wang, K., Luo, Y., et al. 2022, ApJS, 262, 7 [NASA ADS] [CrossRef] [Google Scholar]
  108. Hogg, D. W., Bovy, J., & Lang, D. 2010, ArXiv e-prints [arXiv:1008.4686] [Google Scholar]
  109. Hu, X., & Xu, L. 2003, in Intelligent Data Engineering and Automated Learning, eds. J. Liu, Y. M. Cheung, & H. Yin (Berlin, Heidelberg: Springer), 195 [CrossRef] [Google Scholar]
  110. Hubert, L., & Arabie, P. 1985, J. Classification, 2, 193 [CrossRef] [Google Scholar]
  111. Hunt, E. L., & Reffert, S. 2021, A&A, 646, A104 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  112. Hunt, E. L., & Reffert, S. 2023, A&A, 673, A114 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  113. Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90 [NASA ADS] [CrossRef] [Google Scholar]
  114. Jain, A. K., Murty, M. N., & Flynn, P. J. 1999, ACM Comput. Surveys, 31, 264 [CrossRef] [Google Scholar]
  115. Jaromczyk, J., & Toussaint, G. 1992, Proc. IEEE, 80, 1502 [CrossRef] [Google Scholar]
  116. Jerabkova, T., Boffin, H. M. J., Beccari, G., & Anderson, R. I. 2019, MNRAS, 489, 4418 [Google Scholar]
  117. Jerabkova, T., Boffin, H. M. J., Beccari, G., et al. 2021, A&A, 647, A137 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  118. Johnson, S. C. 1967, Psychometrika, 32, 241 [CrossRef] [Google Scholar]
  119. Kalogeratos, A., & Likas, A. 2012, in Advances in Neural Information Processing Systems, eds. F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Curran Associates, Inc.), 25 [Google Scholar]
  120. Kamdar, H., Conroy, C., Ting, Y.-S., & El-Badry, K. 2021, ApJ, 922, 49 [NASA ADS] [CrossRef] [Google Scholar]
  121. Kapteyn, J. C. 1914, ApJ, 40, 43 [NASA ADS] [CrossRef] [Google Scholar]
  122. Katz, D., Sartoretti, P., Guerrier, A., et al. 2023, A&A, 674, A5 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  123. Kerr, F. J., & Lynden-Bell, D. 1986, MNRAS, 221, 1023 [CrossRef] [Google Scholar]
  124. Kerr, R. M. P., Rizzuto, A. C., Kraus, A. L., & Offner, S. S. R. 2021, ApJ, 917, 23 [NASA ADS] [CrossRef] [Google Scholar]
  125. Kervella, P., Arenou, F., & Thévenin, F. 2022, A&A, 657, A7 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  126. Kharchenko, N. V., Piskunov, A. E., Schilbach, E., Röser, S., & Scholz, R. D. 2013, A&A, 558, A53 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  127. Kirkpatrick, D. G., & Radke, J. D. 1985, in Machine Intelligence and Pattern Recognition, ed. G. T. Toussaint (North-Holland), Comput. Geom., 2, 217 [Google Scholar]
  128. Koontz W. L. G., Narendra P. M., & Fukunaga K. 1976, IEEE Trans. Comput., 25, 936 [CrossRef] [Google Scholar]
  129. Kounkel, M., & Covey, K. 2019, AJ, 158, 122 [Google Scholar]
  130. Kounkel, M., Covey, K., & Stassun, K. G. 2020, AJ, 160, 279 [NASA ADS] [CrossRef] [Google Scholar]
  131. Kpotufe, S., & von Luxburg, U. 2011, in Proceedings of the 28th International Conference on International Conference on Machine Learning, ICML’11 (Madison, WI, USA: Omnipress), 225 [Google Scholar]
  132. Krone-Martins, A., & Moitinho, A. 2014, A&A, 561, A57 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  133. Kuhn, M. A., & Feigelson, E. D. 2019, Handbook of Mixture Analysis, Chapman& Hall/CRC Handbooks of Modern Statistical Methods (CRC Press), 463 [Google Scholar]
  134. Kushniruk, I., Schirmer, T., & Bensby, T. 2017, A&A, 608, A73 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  135. Lange, K. L., Little, R. J. A., & Taylor, J. M. G. 1989, J. Am. Stat. Assoc., 84, 881 [Google Scholar]
  136. Leike, R. H., Glatzle, M., & Enßlin, T. A. 2020, A&A, 639, A138 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  137. Lépine, J. R. D., & Sartori, M. J. 2003, Astrophys. Space Sci. Libr., 299, 63 [Google Scholar]
  138. Lifshitz, L., & Pizer, S. 1990, IEEE Trans. Pattern Anal. Mach. Intell., 12, 529 [CrossRef] [Google Scholar]
  139. Lindegren, L., Hernández, J., Bombrun, A., et al. 2018, A&A, 616, A2 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  140. Lindegren, L., Klioner, S. A., Hernández, J., et al. 2021, A&A, 649, A2 [EDP Sciences] [Google Scholar]
  141. Liu, Y., & Xie, J. 2020, J. Am. Stat. Assoc., 115, 393 [CrossRef] [Google Scholar]
  142. Lombardi, M., Alves, J., & Lada, C. J. 2006, A&A, 454, 781 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  143. Luhman, K. L. 2022, AJ, 163, 24 [NASA ADS] [CrossRef] [Google Scholar]
  144. Luhman, K. L., & Esplin, T. L. 2020, AJ, 160, 44 [Google Scholar]
  145. Luri, X., Brown, A. G. A., Sarro, L. M., et al. 2018, A&A, 616, A9 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  146. MacQueen, J. B. 1967, in Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, eds. L. M. L. Cam, & J. Neyman (University of California Press), 1, 281 [Google Scholar]
  147. Magnani, L., Blitz, L., & Mundy, L. 1985, ApJ, 295, 402 [NASA ADS] [CrossRef] [Google Scholar]
  148. Makarov, V. V. 2007a, ApJS, 169, 105 [NASA ADS] [CrossRef] [Google Scholar]
  149. Makarov, V. V. 2007b, ApJ, 670, 1225 [NASA ADS] [CrossRef] [Google Scholar]
  150. Malsiner-Walli, G., Frühwirth-Schnatter, S., & Grün, B. 2016, Stat. comput., 26, 303 [CrossRef] [Google Scholar]
  151. Mamajek, E. E., & Feigelson, E. D. 2001, in Young Stars Near Earth: Progress and Prospects, eds. T. R. Jayawardhana, & T. Greene, ASP Conf. Ser., 244, 104 [NASA ADS] [Google Scholar]
  152. Mamajek, E. E., Lawson, W. A., & Feigelson, E. D. 1999, ApJ, 516, L77 [Google Scholar]
  153. Mamajek, E. E., Lawson, W. A., & Feigelson, E. D. 2000, ApJ, 544, 356 [NASA ADS] [CrossRef] [Google Scholar]
  154. Marigo, P., Girardi, L., Bressan, A., et al. 2017, ApJ, 835, 77 [Google Scholar]
  155. Matthews, B. 1975, Biochim. Biophys. Acta (BBA) - Protein Structure, 405, 442 [CrossRef] [Google Scholar]
  156. Maurus, S., & Plant, C. 2016, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16 (New York, NY, USA: Association for Computing Machinery), 1055 [CrossRef] [Google Scholar]
  157. McInnes, L., Healy, J., & Astels, S. 2017, J. Open Source Softw., 2, 205 [NASA ADS] [CrossRef] [Google Scholar]
  158. Meingast, S., & Alves, J. 2019, A&A, 621, L3 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  159. Meingast, S., Alves, J., & Fürnkranz, V. 2019, A&A, 622, L13 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  160. Meingast, S., Alves, J., & Rottensteiner, A. 2021, A&A, 645, A84 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  161. Merloni, A., Nandra, K., & Predehl, P. 2020, Nat. Astron., 4, 634 [Google Scholar]
  162. Miret-Roig, N., Galli, P. A. B., Brandner, W., et al. 2020, A&A, 642, A179 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  163. Miret-Roig, N., Galli, P. A. B., Olivares, J., et al. 2022a, A&A, 667, A163 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  164. Miret-Roig, N., Bouy, H., Raymond, S. N., et al. 2022b, Nat. Astron., 6, 89 [NASA ADS] [CrossRef] [Google Scholar]
  165. Muller, D. W., & Sawitzki, G. 1991, J. Am. Stat. Assoc., 86, 738 [Google Scholar]
  166. Müller, P., & Mitra, R. 2013, Bayesian Anal., 8, 269 [Google Scholar]
  167. Neuhäuser, R. 1997, Science, 276, 1363 [CrossRef] [Google Scholar]
  168. Neuhäuser, R., Gießler, F., & Hambaryan, V. V. 2020, MNRAS, 498, 899 [CrossRef] [Google Scholar]
  169. Nocedal, J., & Wright, S. J. 1999, in Numerical Optimization (New York, NY: Springer) [CrossRef] [Google Scholar]
  170. Ochsenbein, F., Bauer, P., & Marcout, J. 2000, A&AS, 143, 23 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  171. Oh, S., Price-Whelan, A. M., Hogg, D. W., Morton, T. D., & Spergel, D. N. 2017, AJ, 153, 257 [NASA ADS] [CrossRef] [Google Scholar]
  172. Ohnaka, K., Hofmann, K. H., Schertl, D., et al. 2013, A&A, 555, A24 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  173. Olivares, J., Bouy, H., Sarro, L. M., et al. 2021, A&A, 649, A159 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  174. Pagani, L., Lagache, G., Bacmann, A., et al. 2003, A&A, 406, L59 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  175. Pagani, L., Bacmann, A., Motte, F., et al. 2004, A&A, 417, 605 [CrossRef] [EDP Sciences] [Google Scholar]
  176. Pagani, L., Pardo, J. R., Apponi, A. J., Bacmann, A., & Cabrit, S. 2005, A&A, 429, 181 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  177. Pecaut, M. J., & Mamajek, E. E. 2013, ApJS, 208, 9 [Google Scholar]
  178. Pecaut, M. J., & Mamajek, E. E. 2016, MNRAS, 461, 794 [Google Scholar]
  179. Pecaut, M. J., Mamajek, E. E., & Bubar, E. J. 2012, ApJ, 746, 154 [Google Scholar]
  180. Pedregosa, F., Varoquaux, G., Gramfort, A., et al. 2011, J. Mach. Learn. Res., 12, 2825 [Google Scholar]
  181. Penoyre, Z., Belokurov, V., & Evans, N. W. 2022a, MNRAS, 513, 2437 [NASA ADS] [CrossRef] [Google Scholar]
  182. Penoyre, Z., Belokurov, V., & Evans, N. W. 2022b, MNRAS, 513, 5270 [Google Scholar]
  183. Perryman, M. A. C., Lindegren, L., Kovalevsky, J., et al. 1997, A&A, 323, L49 [Google Scholar]
  184. Perryman, M. A. C., Brown, A. G. A., Lebreton, Y., et al. 1998, A&A, 331, 81 [NASA ADS] [Google Scholar]
  185. Plotly, T. I. 2015, Collaborative Data Science, Montreal, QC, https://plot.ly [Google Scholar]
  186. Pöppel, W. G. L., Bajaja, E., Arnal, E. M., & Morras, R. 2010, A&A, 512, A83 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  187. Preibisch, T., & Mamajek, E. 2008, in Handbook of Star Forming Regions, Volume II, ed. B. Reipurth, 5, 235 [NASA ADS] [Google Scholar]
  188. Preibisch, T., & Zinnecker, H. 1999, AJ, 117, 2381 [NASA ADS] [CrossRef] [Google Scholar]
  189. Randich, S., Schmitt, J. H. M. M., Prosser, C. F., & Stauffer, J. R. 1995, A&A, 300, 134 [NASA ADS] [Google Scholar]
  190. Ratzenböck, S., Meingast, S., Alves, J., Möller, T., & Bomze, I. 2020, A&A, 639, A64 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  191. Ratzenböck, S., Großschedl, J. E., Alves, J., et al. 2023, A&A, in press, https://doi.org/10.1051/0004-6361/202346901 [Google Scholar]
  192. Reininghaus, J., Kotava, N., Guenther, D., et al. 2011, IEEE Trans. Visual. Comput. Graphics, 17, 2045 [CrossRef] [Google Scholar]
  193. Richardson, S., & Green, P. J. 1997, J. R. Stat. Soc. Ser. B (Stat. Methodol.), 59, 731 [CrossRef] [Google Scholar]
  194. Riedel, A. R., Blunt, S. C., Lambrides, E. L., et al. 2017, AJ, 153, 95 [NASA ADS] [CrossRef] [Google Scholar]
  195. Riello, M., De Angeli, F., Evans, D. W., et al. 2021, A&A, 649, A3 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  196. Rizzuto, A. C., Ireland, M. J., & Robertson, J. G. 2011, MNRAS, 416, 3108 [Google Scholar]
  197. Roccatagliata, V., Sacco, G. G., Franciosini, E., & Randich, S. 2018, A&A, 617, L4 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  198. Román-Zúñiga, C. G., Lada, C. J., Muench, A., & Alves, J. F. 2007, ApJ, 664, 357 [CrossRef] [Google Scholar]
  199. Román-Zúñiga, C. G., Alves, J. F., Lada, C. J., & Lombardi, M. 2010, ApJ, 725, 2232 [Google Scholar]
  200. Röser, S., Schilbach, E., Goldman, B., et al. 2018, A&A, 614, A81 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  201. Röser, S., Schilbach, E., & Goldman, B. 2019, A&A, 621, L2 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  202. Rybizki, J., Demleitner, M., Bailer-Jones, C., et al. 2020, PASP, 132, 074501 [Google Scholar]
  203. Rybizki, J., Green, G. M., Rix, H.-W., et al. 2022, MNRAS, 510, 2597 [NASA ADS] [CrossRef] [Google Scholar]
  204. Salvatier, J., Wiecki, T. V., & Fonnesbeck, C. 2016, PeerJ Comput. Sci., 2, e55 [Google Scholar]
  205. Sarro, L. M., Bouy, H., Berihuete, A., et al. 2014, A&A, 563, A45 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  206. Sartori, M. J., Lépine, J. R. D., & Dias, W. S. 2003, A&A, 404, 913 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  207. Schmitt, J. H. M. M. 1997, A&A, 318, 215 [NASA ADS] [Google Scholar]
  208. Schmitt, J. H. M. M., Czesla, S., Freund, S., Robrade, J., & Schneider, P. C. 2022, A&A, 661, A40 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  209. Schönrich, R., Binney, J., & Dehnen, W. 2010, MNRAS, 403, 1829 [CrossRef] [Google Scholar]
  210. Schwarz, G. 1978, Ann. Stat., 6, 461 [Google Scholar]
  211. Shaffer, J. P. 1995, Ann. Rev. Psychol., 46, 561 [CrossRef] [Google Scholar]
  212. Sim, G., Lee, S. H., Ann, H. B., & Kim, S. 2019, J. Korean Astron. Soc., 52, 145 [NASA ADS] [Google Scholar]
  213. Squicciarini, V., Gratton, R., Bonavita, M., & Mesa, D. 2021, MNRAS, 507, 1381 [NASA ADS] [CrossRef] [Google Scholar]
  214. Stauffer, J. R., Hartmann, L. W., Prosser, C. F., et al. 1997, ApJ, 479, 776 [NASA ADS] [CrossRef] [Google Scholar]
  215. Steinacker, J., Pagani, L., Bacmann, A., & Guieu, S. 2010, A&A, 511, A9 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  216. Steinacker, J., Andersen, M., Thi, W. F., et al. 2015, A&A, 582, A70 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  217. Strehl, A., & Ghosh, J. 2002, J. Mach. Learn. Res., 3, 583 [Google Scholar]
  218. Stuetzle, W., & Nugent, R. 2010, J. Comput. Graphical Stat., 19, 397 [CrossRef] [Google Scholar]
  219. Taylor, M. B. 2005, in Astronomical Data Analysis Software and Systems XIV, eds. P. Shopbell, M. Britton, & R. Ebert, ASP Conf. Ser., 347, 29 [Google Scholar]
  220. Teixeira, P. S., Scholz, A., & Alves, J. 2020, A&A, 642, A86 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  221. Torra, F., Castañeda, J., Fabricius, C., et al. 2021, A&A, 649, A10 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  222. van der Walt, S., Colbert, S. C., & Varoquaux, G. 2011, Comput. Sci. Eng., 13, 22 [Google Scholar]
  223. van Leeuwen, F. 2007, A&A, 474, 653 [CrossRef] [EDP Sciences] [Google Scholar]
  224. van Leeuwen, F. 2009, A&A, 497, 209 [CrossRef] [EDP Sciences] [Google Scholar]
  225. Vedaldi, A., & Soatto, S. 2008, in Computer Vision - ECCV 2008, eds. D. Forsyth, P. Torr, & A. Zisserman (Berlin, Heidelberg: Springer), 705 [CrossRef] [Google Scholar]
  226. Vega-Pons, S., & Ruiz-Shulcloper, J. 2011, Int. J. Pattern Recogn. Artif. Intell., 25, 337 [CrossRef] [Google Scholar]
  227. Vehtari, A., Gelman, A., & Gabry, J. 2017, Stat. Comput., 27, 1413 [Google Scholar]
  228. Villa Vélez, J. A., Brown, A. G. A., & Kenworthy, M. A. 2018, Res. Notes Am. Astron. Soc., 2, 58 [Google Scholar]
  229. Vinh, N. X., Epps, J., & Bailey, J. 2010, J. Mach. Learn. Res., 11, 2837 [Google Scholar]
  230. Wang, K., & Ge, Y. 2021, Astrophysics Source Code Library [record ascl:2102.002] [Google Scholar]
  231. Watanabe, S. 2010, J. Mach. Learn. Res., 11, 3571 [Google Scholar]
  232. Wenger, M., Ochsenbein, F., Egret, D., et al. 2000, A&AS, 143, 9 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  233. Wishart, D. 1969, in Proceedings of the Colloquium in Numerical Taxonomy, ed. A. J. Cole (New York: Academic Press), 282 [Google Scholar]
  234. Witkin, A. P. 1987, in Readings in Computer Vision, eds. M. A. Fischler, & O. Firschein (San Francisco, CA: Morgan Kaufmann), 329 [Google Scholar]
  235. Wright, N. J., & Mamajek, E. E. 2018, MNRAS, 476, 381 [Google Scholar]
  236. Zari, E., Brown, A. G. A., de Bruijne, J., Manara, C. F., & de Zeeuw, P. T. 2017, A&A, 608, A148 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  237. Zari, E., Brown, A. G. A., & de Zeeuw, P. T. 2019, A&A, 628, A123 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  238. Zari, E., Rix, H. W., Frankel, N., et al. 2021, A&A, 650, A112 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  239. Žerjal, M., Ireland, M. J., Crundall, T. D., Krumholz, M. R., & Rains, A. D. 2023, MNRAS, 519, 3992 [CrossRef] [Google Scholar]
  240. Zomorodian, A., & Carlsson, G. 2005, Discrete Comput. Geom., 33, 249 [CrossRef] [Google Scholar]
  241. Zucker, C., Speagle, J. S., Schlafly, E. F., et al. 2019, ApJ, 879, 125 [NASA ADS] [CrossRef] [Google Scholar]
  242. Zucker, C., Goodman, A., Alves, J., et al. 2021, ApJ, 919, 35 [NASA ADS] [CrossRef] [Google Scholar]
  243. Zucker, C., Goodman, A. A., Alves, J., et al. 2022, Nature, 601, 334 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.