Open Access
Issue
A&A
Volume 673, May 2023
Article Number A141
Number of page(s) 10
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/202244657
Published online 23 May 2023
  1. Bahdanau, D., Cho, K., & Bengio, Y. 2014, ArXiv e-prints [arXiv:1409.0473] [Google Scholar]
  2. Bao, H., Dong, L., Piao, S., & Wei, F. 2021, ArXiv e-prints [arXiv:2106.08254] [Google Scholar]
  3. Boone, K. 2019, AJ, 158, 257 [NASA ADS] [CrossRef] [Google Scholar]
  4. Carrasco-Davis, R., Cabrera-Vives, G., Förster, F., et al. 2019, PASP, 131, 108006 [NASA ADS] [CrossRef] [Google Scholar]
  5. Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. 2002, J. Artif. Intell. Res., 16, 321 [CrossRef] [Google Scholar]
  6. Cho, K., van Merrienboer, B., Gulcehre, C., et al. 2014, ArXiv e-prints [arXiv:1406.1078] [Google Scholar]
  7. Choromanski, K. M., Likhosherstov, V., Dohan, D., et al. 2021, in International Conference on Learning Representations [Google Scholar]
  8. Dablain, D., Krawczyk, B., & Chawla, N. V. 2021, ArXiv e-prints [arXiv:2105.02340] [Google Scholar]
  9. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. 2018, ArXiv e-prints [arXiv:1810.04805] [Google Scholar]
  10. Dosovitskiy, A., Beyer, L., Kolesnikov, A., et al. 2020, ArXiv e-prints [arXiv:2010.11929] [Google Scholar]
  11. Drake, A. J., Djorgovski, S. G., Mahabal, A., et al. 2011, Proc. Int. Astron. Union, 7, 306 [CrossRef] [Google Scholar]
  12. Efraimidis, P. S. 2010, ArXiv e-prints [arXiv:1012.0256] [Google Scholar]
  13. Frieman, J. A., Bassett, B., Becker, A., et al. 2007, AJ, 135, 338 [Google Scholar]
  14. Fukugita, M., Ichikawa, T., Gunn, J. E., et al. 1996, AJ, 111, 1748 [Google Scholar]
  15. Gill, M. K., Asefa, T., Kaheil, Y., & McKee, M. 2007, Water Resour. Res., 43, W07416 [CrossRef] [Google Scholar]
  16. Gómez, C., Neira, M., Hernández Hoyos, M., Arbeláez, P., & Forero-Romero, J. E. 2020, MNRAS, 499, 3130 [CrossRef] [Google Scholar]
  17. Hložek, R., Ponder, K. A., Malz, A. I., et al. 2020, ArXiv e-prints [arXiv:2012.12392] [Google Scholar]
  18. Hochreiter, S., & Schmidhuber, J. 1997, Neural Comput., 9, 1735 [CrossRef] [Google Scholar]
  19. Holtzman, J. A., Marriner, J., Kessler, R., et al. 2008, AJ, 136, 2306 [NASA ADS] [CrossRef] [Google Scholar]
  20. Hossain, M. S., Betts, J. M., & Paplinski, A. P. 2021, Neurocomputing, 462, 69 [Google Scholar]
  21. Ivezić, Ž., Kahn, S. M., Tyson, J., et al. 2019, ApJ, 873, 111 [NASA ADS] [CrossRef] [Google Scholar]
  22. Ji, S., Xu, W., Yang, M., & Yu, K. 2013, IEEE Trans. Pattern Anal. Mach. Intell., 35, 221 [Google Scholar]
  23. Kingma, D. P., & Ba, J. 2014, ArXiv e-prints [arXiv:1412.6980] [Google Scholar]
  24. Lin, T.-Y., Goyal, P., Girshick, R. B., He, K., & Dollár, P. 2017, ArXiv e-prints [arXiv:1708.02002] [Google Scholar]
  25. Liu, Z., Luo, S., Li, W., et al. 2021, ArXiv e-prints [arXiv:2011.10185] [Google Scholar]
  26. Liu, Z., Ning, J., Cao, Y., et al. 2022, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) [Google Scholar]
  27. Möller, A., & de Boissière, T. 2020, MNRAS, 491, 4277 [CrossRef] [Google Scholar]
  28. Ozgur Turkoglu, M., D’Aronco, S., Perich, G., et al. 2021, ArXiv e-prints [arXiv:2102.08820] [Google Scholar]
  29. Pasquet, J., Pasquet, J., Chaumont, M., & Fouchez, D. 2019, A&A, 627, A21 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  30. Paszke, A., Gross, S., Massa, F., et al. 2019, ArXiv e-prints [arXiv:1912.01703] [Google Scholar]
  31. PLAsTiCC-team (Allam, T. Jr., et al.) 2018, ArXiv e-prints [arXiv:1810.00001] [Google Scholar]
  32. Qu, H., Sako, M., Möller, A., & Doux, C. 2021, AJ, 162, 67 [NASA ADS] [CrossRef] [Google Scholar]
  33. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. 1985, Learning internal representations by error propagation, Tech. rep. (San Diego La Jolla Inst for Cognitive Science: California Univ.) [CrossRef] [Google Scholar]
  34. Sainte Fare Garnot, V., Landrieu, L., Giordano, S., & Chehata, N. 2019, ArXiv e-prints [arXiv:1911.07757] [Google Scholar]
  35. Sako, M., Bassett, B., Becker, A. C., et al. 2014, PASP, 130, 064002 [Google Scholar]
  36. Sharir, G., Noy, A., & Zelnik-Manor, L. 2021, ArXiv e-prints [arXiv:2103.13915] [Google Scholar]
  37. Shi, X., Chen, Z., Wang, H., et al. 2015, ArXiv e-prints [arXiv:1506.04214] [Google Scholar]
  38. Tran, D., Bourdev, L., Fergus, R., Torresani, L., & Paluri, M. 2014, ArXiv eprints [arXiv:1412.0767] [Google Scholar]
  39. Vaswani, A., Shazeer, N., Parmar, N., et al. 2017, ArXiv e-prints [arXiv:1706.03762] [Google Scholar]
  40. Wang, S., Li, B. Z., Khabsa, M., Fang, H., & Ma, H. 2020, ArXiv e-prints [arXiv:2006.04768] [Google Scholar]
  41. Yan, S., Xiong, X., Arnab, A., et al. 2022, ArXiv e-prints [arXiv:2201.04288] [Google Scholar]
  42. Yuan, Y., & Lin, L. 2021, IEEE J. Sel. Top. Appl. Earth Observ. Rem. Sensing, 14, 474 [NASA ADS] [CrossRef] [Google Scholar]
  43. Zhou, J., Wei, C., Wang, H., et al. 2022, ArXiv e-prints [arXiv:2111.07832] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.