Open Access
Issue
A&A
Volume 672, April 2023
Article Number A51
Number of page(s) 20
Section Cosmology (including clusters of galaxies)
DOI https://doi.org/10.1051/0004-6361/202243054
Published online 27 March 2023
  1. Ajani, V., Starck, J.-L., & Pettorino, V. 2021, A&A, 645, L11 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  2. Alain, G., & Bengio, Y. 2013, in 1st International Conference on Learning Representations, ICLR 2013 - Conference Track Proceedings, 15, 3743 [Google Scholar]
  3. Alsing, J., Heavens, A., Jaffe, A. H., et al. 2016, MNRAS, 455, 4452 [Google Scholar]
  4. Anderson, B. D. O. 1982, Stochast. Process. Appl., 12, 313 [Google Scholar]
  5. Astropy Collaboration (Robitaille, T. P., et al.) 2013, A&A, 558, A33 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  6. Astropy Collaboration (Price-Whelan, A. M., et al.) 2018, AJ, 156, 123 [Google Scholar]
  7. Bartelmann, M. 2010, Class. Quant. Grav., 27, 233001 [CrossRef] [Google Scholar]
  8. Betancourt, M. 2017, ArXiv e-prints [arXiv:1701.02434] [Google Scholar]
  9. Bobin, J., Starck, J. L., Sureau, F., & Fadili, J. 2012, Adv. Astron., 2012, 703217 [CrossRef] [Google Scholar]
  10. Bradbury, J., Frostig, R., Hawkins, P., et al. 2018, https://github.com/google/jax [Google Scholar]
  11. Cheng, S., Ting, Y.-S., Ménard, B., & Bruna, J. 2020, MNRAS, 499, 5902 [Google Scholar]
  12. Clowe, D., Markevitch, M., Bradač, M., et al. 2012, ApJ, 758, 128 [NASA ADS] [CrossRef] [Google Scholar]
  13. Dhariwal, P., & Nichol, A. 2021, ArXiv e-prints [arXiv:2105.05233] [Google Scholar]
  14. Dillon, J. V., Langmore, I., Tran, D., et al. 2017, ArXiv e-prints [arXiv:1711.10604] [Google Scholar]
  15. Elsner, F., & Wandelt, B. D. 2013, A&A, 549, A111 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  16. Erben, T., Van Waerbeke, L., Bertin, E., Mellier, Y., & Schneider, P. 2001, A&A, 366, 717 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  17. Fiedorowicz, P., Rozo, E., Boruah, S. S., Chang, C., & Gatti, M. 2022, MNRAS, 512, 73 [NASA ADS] [CrossRef] [Google Scholar]
  18. Finoguenov, A., Guzzo, L., Hasinger, G., et al. 2007, ApJS, 172, 182 [Google Scholar]
  19. Girolami, M., & Calderhead, B. 2011, J. R. Statist. Soc.: Ser. B (Statist. Methodol.), 73, 123 [Google Scholar]
  20. Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., et al. 2014, ArXiv e-prints [arXiv:1406.2661] [Google Scholar]
  21. Gouk, H., Frank, E., Pfahringer, B., & Cree, M. J. 2020, Mach. Learn., 110, 393 [Google Scholar]
  22. Harnois-Déraps, J., Martinet, N., Castro, T., et al. 2021, MNRAS, 506, 1623 [CrossRef] [Google Scholar]
  23. Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Nature, 585, 357 [Google Scholar]
  24. Hastings, W. K. 1970, Biometrika, 57, 97 [Google Scholar]
  25. He, K., Zhang, X., Ren, S., & Sun, J. 2016, Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 770 [Google Scholar]
  26. Ho, J., Jain, A., & Abbeel, P. 2020, Adv. Neural Inf. Process. Syst., 33, 6840 [Google Scholar]
  27. Hoekstra, H., Franx, M., Kuijken, K., & Squires, G. 1998, ApJ, 504, 636 [Google Scholar]
  28. Horowitz, B., Seljak, U., & Aslanyan, G. 2019, J. Cosmol. Astropart. Phys., 10, 035 [CrossRef] [Google Scholar]
  29. Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90 [Google Scholar]
  30. Ilbert, O., Capak, P., Salvato, M., et al. 2009, ApJ, 690, 1236 [NASA ADS] [CrossRef] [Google Scholar]
  31. Ivezić, Z., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111 [NASA ADS] [CrossRef] [Google Scholar]
  32. Jee, M. J., Mahdavi, A., Hoekstra, H., et al. 2012, ApJ, 747, 96 [NASA ADS] [CrossRef] [Google Scholar]
  33. Jeffrey, N., Abdalla, F. B., Lahav, O., et al. 2018a, MNRAS, 479, 2871 [Google Scholar]
  34. Jeffrey, N., Heavens, A. F., & Fortio, P. D. 2018b, Astron. Comput., 25, 230 [Google Scholar]
  35. Jeffrey, N., Alsing, J., & Lanusse, F. 2020a, MNRAS, 501, 954 [NASA ADS] [CrossRef] [Google Scholar]
  36. Jeffrey, N., Lanusse, F., Lahav, O., & Starck, J.-L. 2020b, MNRAS, 492, 5023 [Google Scholar]
  37. Jimenez Rezende, D., Mohamed, S., & Wierstra, D. 2014, ArXiv e-prints [arXiv:1401.4082] [Google Scholar]
  38. Jolicoeur-Martineau, A., Piché-Taillefer, R., des Combes, R. T., & Mitliagkas, I. 2020, ArXiv e-prints [arXiv:2009.05475] [Google Scholar]
  39. Kacprzak, T., Kirk, D., Friedrich, O., et al. 2016, MNRAS, 463, 3653 [Google Scholar]
  40. Kaiser, N., & Squires, G. 1993, ApJ, 404, 441 [Google Scholar]
  41. Kaiser, N., Squires, G., & Broadhurst, T. 1995, ApJ, 449, 460 [Google Scholar]
  42. Kilbinger, M. 2015, Rep. Progr. Phys., 78, 086901 [Google Scholar]
  43. Kingma, D. P., & Welling, M. 2013, ArXiv e-prints [arXiv:1312.6114] [Google Scholar]
  44. Kluyver, T., Ragan-Kelley, B., Pérez, F., et al. 2016, Jupyter Notebooks - a Publishing Format for Reproducible Computational Workflows, 87 [Google Scholar]
  45. Kurita, T., Takada, M., Nishimichi, T., et al. 2021, MNRAS, 501, 833 [Google Scholar]
  46. Lahav, O., Fisher, K. B., Hoffman, Y., Scharf, C. A., & Zaroubi, S. 1994, ApJ, 423, L93 [NASA ADS] [CrossRef] [Google Scholar]
  47. Lanusse, F., Starck, J. L., Leonard, A., & Pires, S. 2016, A&A, 591, A2 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  48. Laureijs, R., Amiaux, J., Arduini, S., et al. 2011, ArXiv e-prints [arXiv:1110.3193] [Google Scholar]
  49. Lecun, Y., Chopra, S., Hadsell, R., Ranzato, M., & Huang, F.-J. 2006, A Tutorial on Energy-Based Learning (New York: MIT Press) [Google Scholar]
  50. Leonard, A., Dupé, F.-X., & Starck, J.-L. 2012, A&A, 539, A85 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  51. Lim, J. H., Courville, A., Pal, C., & Huang, C.-W. 2020, ArXiv e-prints [arXiv:2006.05164] [Google Scholar]
  52. Liu, J., Petri, A., Haiman, Z., et al. 2015a, Phys. Rev. D, 91, 063507 [Google Scholar]
  53. Liu, X., Pan, C., Li, R., et al. 2015b, MNRAS, 450, 2888 [Google Scholar]
  54. Marinacci, F., Vogelsberger, M., Pakmor, R., et al. 2018, MNRAS, 480, 5113 [NASA ADS] [Google Scholar]
  55. Marshall, P. J. 2001, Clusters of galaxies and the high redshift universe observed in X-rays, Recent results of XMM-Newton and Chandra, XXXVIth Rencontres de Moriond, XXIst Moriond Astrophysics Meeting, March 10-17, 2001 Savoie, France, eds. D. M. Neumann, J. T. T. Van, http://moriond.in2p3.fr, 47 [Google Scholar]
  56. Martinet, N., Schneider, P., Hildebrandt, H., et al. 2018, MNRAS, 474, 712 [Google Scholar]
  57. Massey, R., Rhodes, J., Ellis, R., et al. 2007, ApJS, 172, 239 [NASA ADS] [CrossRef] [Google Scholar]
  58. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. 1953, J. Chem. Phys., 21, 1087 [Google Scholar]
  59. Naiman, J. P., Pillepich, A., Springel, V., et al. 2018, MNRAS, 477, 1206 [Google Scholar]
  60. Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493 [Google Scholar]
  61. Neal, R. M. 2011, Handbook of Markov Chain Monte Carlo, 113 [Google Scholar]
  62. Nelson, D., Pillepich, A., Springel, V., et al. 2018, MNRAS, 475, 624 [Google Scholar]
  63. Nelson, D., Springel, V., Pillepich, A., et al. 2019, Comput. Astrophys. Cosmol., 6, 2 [Google Scholar]
  64. Nichol, A., & Dhariwal, P. 2021, ArXiv e-prints [arXiv:2102.09672] [Google Scholar]
  65. Osato, K., Liu, J., & Haiman, Z. 2021, MNRAS, 502, 5593 [Google Scholar]
  66. Peel, A., Lanusse, F., & Starck, J.-L. 2017, ApJ, 847, 23 [Google Scholar]
  67. Perez, F., & Granger, B. E. 2007, Comput. Sci. Eng., 9, 21 [Google Scholar]
  68. Perraudin, N., Defferrard, M., Kacprzak, T., & Sgier, R. 2019, Astron. Comput., 27, 130 [NASA ADS] [CrossRef] [Google Scholar]
  69. Pillepich, A., Nelson, D., Hernquist, L., et al. 2018, MNRAS, 475, 648 [Google Scholar]
  70. Planck Collaboration XIII 2015, A&A, 594, A13 [Google Scholar]
  71. Porqueres, N., Heavens, A., Mortlock, D., & Lavaux, G. 2022, MNRAS, 509, 3194 [Google Scholar]
  72. Price, M. A., Cai, X., McEwen, J. D., Pereyra, M., & Kitching, T. D. 2018, MNRAS, 489, 3236 [Google Scholar]
  73. Remy, B., Lanusse, F., Ramzi, Z., et al. 2020, ArXiv e-prints [arXiv:2011.08271] [Google Scholar]
  74. Ribli, D., Pataki, B. Á., & Csabai, I. 2019, Nat. Astron., 3, 93 [Google Scholar]
  75. Ronneberger, O., Fischer, P., & Brox, T. 2015, ArXiv e-prints [arXiv:1505.04597] [Google Scholar]
  76. Salimans, T., Karpathy, A., Chen, X., & Kingma, D. P. 2017, ArXiv e-prints [arXiv:1701.05517] [Google Scholar]
  77. Schneider, M. D., Ng, K. Y., Dawson, W. A., et al. 2016, ApJ, 839, 25 [Google Scholar]
  78. Schrabback, T., Erben, T., Simon, P., et al. 2007, A&A, 468, 823 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  79. Schrabback, T., Hartlap, J., Joachimi, B., et al. 2010, A&A, 516, A63 [CrossRef] [EDP Sciences] [Google Scholar]
  80. Scoville, N., Abraham, R. G., Aussel, H., et al. 2007, ApJS, 172, 38 [NASA ADS] [CrossRef] [Google Scholar]
  81. Shan, H., Liu, X., Hildebrandt, H., et al. 2018, MNRAS, 474, 1116 [Google Scholar]
  82. Shi, J., Kurita, T., Takada, M., et al. 2021, J. Cosmol. Astropart. Phys., 2021, 030 [CrossRef] [Google Scholar]
  83. Shirasaki, M., Moriwaki, K., Oogi, T., et al. 2021, MNRAS, 504, 1825 [NASA ADS] [CrossRef] [Google Scholar]
  84. Simon, P., Heymans, C., Schrabback, T., et al. 2012, MNRAS, 419, 998 [NASA ADS] [CrossRef] [Google Scholar]
  85. Smith, M. J., Geach, J. E., Jackson, R. A., et al. 2022, MNRAS, 511, 1808 [CrossRef] [Google Scholar]
  86. Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., & Ganguli, S. 2015, ArXiv e-prints [arXiv:1503.03585] [Google Scholar]
  87. Song, Y., & Ermon, S. 2019, ArXiv e-prints [arXiv:1907.05600] [Google Scholar]
  88. Song, Y., & Ermon, S. 2020, ArXiv e-prints [arXiv:2006.09011] [Google Scholar]
  89. Song, Y., Garg, S., Shi, J., & Ermon, S. 2019, ArXiv e-prints [arXiv:1905.07088] [Google Scholar]
  90. Song, Y., Sohl-Dickstein, J., Kingma, D. P., et al. 2020, ArXiv e-prints [arXiv:2011.13456] [Google Scholar]
  91. Spergel, D., Gehrels, N., Baltay, C., et al. 2015, ArXiv e-prints [arXiv:1503.03757] [Google Scholar]
  92. Springel, V., Pakmor, R., Pillepich, A., et al. 2018, MNRAS, 475, 676 [Google Scholar]
  93. Starck, J.-L., Murtagh, F., & Bijaoui, A. 1998, Image Processing and Data Analysis: The Multiscale Approach (Cambridge: Cambridge University Press) [CrossRef] [Google Scholar]
  94. Starck, J.-L., Pires, S., & Réfrégier, A. 2006, A&A, 451, 1139 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  95. Starck, J. L., Themelis, K. E., Jeffrey, N., Peel, A., & Lanusse, F. 2021, A&A, 649, A99 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  96. Takada, M., & Jain, B. 2003, ApJ, 583, L49 [NASA ADS] [CrossRef] [Google Scholar]
  97. van den Oord, A., Kalchbrenner, N., & Kavukcuoglu, K. 2016, ArXiv e-prints [arXiv:1601.06759] [Google Scholar]
  98. Villaescusa-Navarro, F., Genel, S., Angles-Alcazar, D., et al. 2022, ApJS, 259, 61 [NASA ADS] [CrossRef] [Google Scholar]
  99. Vincent, P. 2011, Neural Comput., 23, 1661 [Google Scholar]
  100. Yiu, T. W. H., Fluri, J., & Kacprzak, T. 2022, J. Cosmol. Astropart. Phys., 12, 013 [CrossRef] [Google Scholar]
  101. Zaroubi, S., Hoffman, Y., Fisher, K. B., & Lahav, O. 1995, ApJ, 449, 446 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.