Open Access
Issue |
A&A
Volume 664, August 2022
|
|
---|---|---|
Article Number | A71 | |
Number of page(s) | 15 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361/202243311 | |
Published online | 09 August 2022 |
- Cantalloube, F., Por, E. H., Dohlen, K., et al. 2018, A&A, 620, L10 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Cavarroc, C., Boccaletti, A., Baudoz, P., Fusco, T., & Rouan, D. 2006, A&A, 447, 397 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Chambouleyron, V., Fauvarque, O., Janin-Potiron, P., et al. 2020, A&A, 644, A6 [EDP Sciences] [Google Scholar]
- Chua, K., Calandra, R., McAllister, R., & Levine, S. 2018, in Advances in Neural Information Processing Systems, 4754 [Google Scholar]
- Conan, J.-M., Raynaud, H.A.R., Kulcsár, C., Meimon, S., & Sivo, G. 2011, in Adaptive Optics for Extremely Large Telescopes (Singapore: World Scientific) [Google Scholar]
- Correia, C., Conan, J.-M., Kulcsár, C., Raynaud, H.-F., & Petit, C. 2010a, in 1st AO4ELT conference-Adaptive Optics for Extremely Large Telescopes, EDP Sciences, 07003 [Google Scholar]
- Correia, C., Raynaud, H.-F., Kulcsár, C., & Conan, J.-M. 2010b, J. Opt. Soc. Am. A, 27, 333 [NASA ADS] [CrossRef] [Google Scholar]
- Correia, C. M., Bond, C. Z., Sauvage, J.-F., et al. 2017, J. Opt. Soc. Am. A, 34, 1877 [NASA ADS] [CrossRef] [Google Scholar]
- Correia, C. M., Fauvarque, O., Bond, C. Z., et al. 2020, MNRAS, 495, 4380 [NASA ADS] [CrossRef] [Google Scholar]
- Deisenroth, M., & Rasmussen, C. E. 2011, in Proceedings of the 28th International Conference on machine learning (ICML-11), Citeseer, 465 [Google Scholar]
- Deo, V., Gendron, É., Rousset, G., et al. 2019, A&A, 629, A107 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Deo, V., Gendron, É., Vidal, F., et al. 2021, A&A, 650, A41 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Dessenne, C., Madec, P.-Y., & Rousset, G. 1998, Appl. Opt., 37, 4623 [NASA ADS] [CrossRef] [Google Scholar]
- Dressing, C. D., & Charbonneau, D. 2015, ApJ, 807, 45 [Google Scholar]
- Engl, H. W., Hanke, M., & Neubauer, A. 1996, Regularization of Inverse Problems (Berlin: Springer Science & Business Media), 375 [Google Scholar]
- Fauvarque, O., Neichel, B., Fusco, T., Sauvage, J.-F., & Girault, O. 2017, J. Astron. Teles. Instrum. Syst., 3, 019001 [NASA ADS] [CrossRef] [Google Scholar]
- Fauvarque, O., Janin-Potiron, P., Correia, C., et al. 2019, J. Opt. Soc. Am. A, 36, 1241 [Google Scholar]
- Fernandes, R. B., Mulders, G. D., Pascucci, I., Mordasini, C., & Emsenhuber, A. 2019, ApJ, 874, 81 [NASA ADS] [CrossRef] [Google Scholar]
- Ferreira, F., Gratadour, D., Sevin, A., & Doucet, N. 2018, in 2018 International Conference on High Performance Computing & Simulation (HPCS), IEEE, 180 [CrossRef] [Google Scholar]
- Fried, D. L. 1990, J. Opt. Soc. Am. A, 7, 1224 [NASA ADS] [CrossRef] [Google Scholar]
- Fusco, T., Rousset, G., Sauvage, J.-F., et al. 2006, Opt. Exp., 14, 7515 [Google Scholar]
- Gal, Y., McAllister, R., & Rasmussen, C. E. 2016, in Data-Efficient Machine Learning workshop (USA: ICML), 4, 25 [Google Scholar]
- Gendron, E. 1994, in European Southern Observatory Conference andWorkshop Proceedings, European Southern Observatory Conference and Workshop Proceedings, 48, 187 [NASA ADS] [Google Scholar]
- Give’on, A., Kern, B., Shaklan, S., Moody, D. C., & Pueyo, L. 2007, SPIE, 6691, 66910A [Google Scholar]
- Gray, M., & Le Roux, B. 2012, SPIE, 8447, 84471T [Google Scholar]
- Guyon, O. 2005, ApJ, 629, 592 [NASA ADS] [CrossRef] [Google Scholar]
- Guyon, O. 2018, Ann. Rev. Astron. Astrophys., 56, 315 [CrossRef] [Google Scholar]
- Guyon, O., & Males, J. 2017, AJ, accepted [arXiv:1707.00570] [Google Scholar]
- Haffert, S. Y., Males, J., Close, L., et al. 2021a, SPIE, 11823, 118231C [NASA ADS] [Google Scholar]
- Haffert, S. Y., Males, J. R., Close, L. M., et al. 2021b, J. Astron. Teles. Instrum. Syst., 7, 029001 [NASA ADS] [CrossRef] [Google Scholar]
- Heess, N., Wayne, G., Silver, D., et al. 2015, ArXiv e-prints [arXiv:1510.09142] [Google Scholar]
- Heritier, C., Esposito, S., Fusco, T., et al. 2018, MNRAS, 481, 2829 [NASA ADS] [Google Scholar]
- Janner, M., Fu, J., Zhang, M., & Levine, S. 2019, ArXiv e-prints [arXiv:1906.08253] [Google Scholar]
- Jolissaint, L. 2010, J. Euro. Opt. Soc., 5, 10055 [NASA ADS] [CrossRef] [Google Scholar]
- Kasper, M., Fedrigo, E., Looze, D. P., et al. 2004, J. Opt. Soc. Am. A, 21, 1004 [NASA ADS] [CrossRef] [Google Scholar]
- Ke, H., Xu, B., Xu, Z., et al. 2019, Optik, 178, 785 [NASA ADS] [CrossRef] [Google Scholar]
- Kingma, D. P., & Ba, J. 2014, International Conference for Learning Representations, San Diego, 2015 [Google Scholar]
- Korkiakoski, V., Vérinaud, C., & Le Louarn, M. 2008, Appl. Opt., 47, 79 [Google Scholar]
- Kulcsár, C., Raynaud, H.-F., Petit, C., Conan, J.-M., & Lesegno, P. V. D. 2006, Opt. Express, 14, 7464 [CrossRef] [Google Scholar]
- Lagrange, A. M., Gratadour, D., Chauvin, G., et al. 2009, A&A, 493, L21 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Lai, O., Chun, M., Dungee, R., Lu, J., & Carbillet, M. 2021, MNRAS, 501, 3443 [NASA ADS] [CrossRef] [Google Scholar]
- Landman, R., Haffert, S. Y., Radhakrishnan, V. M., & Keller, C. U. 2020, SPIE, 11448, 1144849 [NASA ADS] [Google Scholar]
- Landman, R., Haffert, S. Y., Radhakrishnan, V. M., & Keller, C. U. 2021, J. Astron. Teles. Instrum. Syst., 7, 039002 [NASA ADS] [CrossRef] [Google Scholar]
- Liu, X., Morris, T., & Saunter, C. 2019, in International Conference on Artificial Neural Networks (Berlin: Springer), 537 [Google Scholar]
- Maas, A. L., Hannun, A. Y., & Ng, A. Y. 2013, Proc. ICML, 30, 3 [Google Scholar]
- Macintosh, B., Graham, J. R., Barman, T., et al. 2015, Science, 350, 64 [Google Scholar]
- Madec, P.-Y. 1999, Adaptive Optics in Astronomy (Cambridge: Cambridge University Press), 131 [CrossRef] [Google Scholar]
- Males, J. R., & Guyon, O. 2018, J. Astron. Teles. Instrum. Syst., 4, 019001 [NASA ADS] [CrossRef] [Google Scholar]
- Males, J. R., Close, L. M., Miller, K., et al. 2018, SPIE, 10703, 1070309 [NASA ADS] [Google Scholar]
- Marois, C., Racine, R., Doyon, R., Lafrenière, D., & Nadeau, D. 2004, ApJ, 615, L61 [NASA ADS] [CrossRef] [Google Scholar]
- Marois, C., Lafrenière, D., Doyon, R., Macintosh, B., & Nadeau, D. 2006, ApJ, 641, 556 [Google Scholar]
- Marois, C., Zuckerman, B., Konopacky, Q. M., Macintosh, B., & Barman, T. 2010, Nature, 468, 1080 [NASA ADS] [CrossRef] [Google Scholar]
- Mawet, D., Pueyo, L., Lawson, P., et al. 2012, SPIE Conf. Ser., 8442, 844204 [NASA ADS] [Google Scholar]
- Nagabandi, A., Kahn, G., Fearing, R. S., & Levine, S. 2018, in 2018 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 7559 [CrossRef] [Google Scholar]
- Nousiainen, J., Rajani, C., Kasper, M., & Helin, T. 2021, Opt. Express, 29, 15327 [NASA ADS] [CrossRef] [Google Scholar]
- Otten, G. P. P. L., Vigan, A., Muslimov, E., et al. 2021, A&A, 646, A150 [EDP Sciences] [Google Scholar]
- Paschall, R. N., & Anderson, D. J. 1993, Appl. Opt., 32, 6347 [NASA ADS] [CrossRef] [Google Scholar]
- Paul, B., Sauvage, J.-F., & Mugnier, L. 2013, A&A, 552, A48 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Pelt, D. M., & Sethian, J. A. 2018, Proc. Natl. Acad. Sci., 115, 254 [CrossRef] [Google Scholar]
- Pou, B., Ferreira, F., Quinones, E., Gratadour, D., & Martin, M. 2022, Opt. Express, 30, 2991 [NASA ADS] [CrossRef] [Google Scholar]
- Poyneer, L. A., & Macintosh, B. 2004, J. Opt. Soc. Am. A, 21, 810 [NASA ADS] [CrossRef] [Google Scholar]
- Poyneer, L., & Véran, J.-P. 2008, J. Opt. Soc. Am. A, 25, 1486 [NASA ADS] [CrossRef] [Google Scholar]
- Poyneer, L. A., Macintosh, B. A., & Véran, J.-P. 2007, J. Opt. Soc. Am. A, 24, 2645 [NASA ADS] [CrossRef] [Google Scholar]
- Poyneer, L., van Dam, M., & Véran, J.-P. 2009, J. Opt. Soc. Am. A, 26, 833 [NASA ADS] [CrossRef] [Google Scholar]
- Ragazzoni, R. 1996, J. Mod. Opt., 43, 289 [Google Scholar]
- Ronneberger, O., Fischer, P., & Brox, T. 2015, in International Conference on Medical Image Computing and Computer-assisted Intervention (Berlin: Springer), 234 [Google Scholar]
- Sinquin, B., Prengère, L., Kulcsár, C., et al. 2020, MNRAS, 498, 3228 [NASA ADS] [CrossRef] [Google Scholar]
- Snellen, I., de Kok, R., Birkby, J. L., et al. 2015, A&A, 576, A59 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
- Sun, Z., Chen, Y., Li, X., Qin, X., & Wang, H. 2017, Opt. Commun., 382, 519 [NASA ADS] [CrossRef] [Google Scholar]
- Swanson, R., Lamb, M., Correia, C., Sivanandam, S., & Kutulakos, K. 2018, SPIE, 10703, 107031F [NASA ADS] [Google Scholar]
- Swanson, R., Lamb, M., Correia, C. M., Sivanandam, S., & Kutulakos, K. 2021, MNRAS, 503, 2944 [NASA ADS] [CrossRef] [Google Scholar]
- van Kooten, M., Doelman, N., & Kenworthy, M. 2017, Performance of AO predictive control in the presence of non-stationary turbulence (Instituto de Astrofisica de Canarias) [Google Scholar]
- van Kooten, M., Doelman, N., & Kenworthy, M. 2019, J. Opt. Soc. Am. A, 36, 731 [NASA ADS] [CrossRef] [Google Scholar]
- Vérinaud, C. 2004, Opt. Commun., 233, 27 [Google Scholar]
- Wong, A. P., Norris, B. R., Tuthill, P. G., et al. 2021, J. Astron. Teles. Instrum. Syst., 7, 019001 [NASA ADS] [CrossRef] [Google Scholar]
- Xu, Z., Yang, P., Hu, K., Xu, B., & Li, H. 2019, Appl. Opt., 58, 1998 [NASA ADS] [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.