Issue |
A&A
Volume 629, September 2019
|
|
---|---|---|
Article Number | A107 | |
Number of page(s) | 18 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361/201935847 | |
Published online | 12 September 2019 |
A telescope-ready approach for modal compensation of pyramid wavefront sensor optical gain
LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Univ. Paris Diderot, Sorbonne Paris Cité, 5 Place Jules Janssen, 92195 Meudon, France
e-mail: vincent.deo@obspm.fr
Received:
6
May
2019
Accepted:
27
July
2019
The pyramid wavefront sensor (PWFS) is the currently preferred design for high-sensitivity adaptive optics (AO) systems for extremely large telescopes (ELTs). Yet, nonlinearities of the signal retrieved from the PWFS pose a significant problem for achieving the full correction potential using this sensor, a problem that will only worsen with the increasing dimension of telescopes. This paper investigates the so-called optical gain (OG) phenomenon, a sensitivity reduction and an overall modification of the sensor response induced by the residual wavefront itself, with considerable effects in standard observation conditions for ELT-sized AO systems. Through extensive numerical analysis, this work proposes a formalism to measure and minimize the first-order nonlinearity error caused by optical gain variation, which uses a modal compensation technique of the calibrated reconstructor; this enables a notable increase in performance in faint guide stars or important seeing scenarios, for example from 16 to 30% H-band Strehl ratio for a sixteenth magnitude star in r0 = 13 cm turbulence. Beyond the performance demonstrated by this compensation, a complete algorithm for realistic operation conditions is designed, which from dithering a few deformable mirror modes retrieves the optimal gains and updates the command matrix accordingly. The performance of this self-updating technique – which successfully allows automatic OG compensation regardless of the turbulent conditions, and its minimal interference with the scientific instrument are demonstrated through extensive end-to-end numerical simulations, all at the scale of an ELT instrument single-conjugate AO system.
Key words: instrumentation: adaptive optics / techniques: high angular resolution / telescopes
© V. Deo et al. 2019
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.