Free Access
Issue
A&A
Volume 659, March 2022
Article Number A199
Number of page(s) 20
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/202141480
Published online 29 March 2022
  1. Abadi, M., Agarwal, A., Barham, P., et al. 2015, TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, Software available from tensorflow.org [Google Scholar]
  2. Aguilera-Gómez, C., Ramírez, I., & Chanamé, J. 2018, A&A, 614, A55 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  3. Antoniadis-Karnavas, A., Sousa, S. G., Delgado-Mena, E., et al. 2020, A&A, 636, A9 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  4. Bagnulo, S., Jehin, E., Ledoux, C., et al. 2003, Messenger, 114, 10 [NASA ADS] [Google Scholar]
  5. Ball, N. M., & Brunner, R. J. 2010, Int. J. Modern Phys. D, 19, 1049 [NASA ADS] [CrossRef] [Google Scholar]
  6. Baron, D. 2019, Machine Learning in Astronomy: a Practical Overview [arXiv:1904.07248] [Google Scholar]
  7. Cadusch, P. J., Hlaing, M. M., Wade, S. A., McArthur, S. L., & Stoddart, P. R. 2013, J. Raman Spectr., 44, 1587 [NASA ADS] [CrossRef] [Google Scholar]
  8. Carleo, G., Cirac, I., Cranmer, K., et al. 2019, Rev. Mod. Phys., 91, 041001 [NASA ADS] [CrossRef] [Google Scholar]
  9. Catanzaro, G., & Balona, L. A. 2012, MNRAS, 421, 1222 [NASA ADS] [CrossRef] [Google Scholar]
  10. Cretignier, M., Francfort, J., Dumusque, X., Allart, R., & Pepe, F. 2020, A&A, 640, A42 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  11. dos Santos, L. A., Meléndez, J., do Nascimento, J. D., et al. 2016, A&A, 592, A156 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  12. Dozat, T. 2016, Incorporating Nesterov Momentum into Adam [Google Scholar]
  13. Farias, H., Ortiz, D., Damke, G., Jaque Arancibia, M., & Solar, M. 2020, Astron. Comput., 33, 100420 [NASA ADS] [CrossRef] [Google Scholar]
  14. Fullerton, A. W., Petit, V., Bagnulo, S., & Wade, G. A. 2011, in Active OB Stars: Structure, Evolution, Mass Loss, and Critical Limits, eds. C. Neiner, G. Wade, G. Meynet, & G. Peters, 272, 182 [NASA ADS] [Google Scholar]
  15. Gaia Collaboration (Prusti, T., et al.) 2016, A&A, 595, A1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  16. George, D., & Huerta, E. 2018, Phys. Lett. B, 778, 64 [NASA ADS] [CrossRef] [Google Scholar]
  17. Hendriks, L., & Aerts, C. 2019, PASP, 131, 108001 [Google Scholar]
  18. Hoeser, T., & Kuenzer, C. 2020, Remote Sens., 12, 1667 [NASA ADS] [CrossRef] [Google Scholar]
  19. Hojjatpanah, S., Figueira, P., Santos, N. C., et al. 2019, A&A, 629, A80 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  20. Howarth, I. D., Siebert, K. W., Hussain, G. A. J., & Prinja, R. K. 1997, MNRAS, 284, 265 [NASA ADS] [CrossRef] [Google Scholar]
  21. Ivezić, V., Kahn, S. M., Tyson, J. A., et al. 2019, ApJ, 873, 111 [NASA ADS] [CrossRef] [Google Scholar]
  22. Kingma, D. P., & Ba, J. 2017, Adam: A Method for Stochastic Optimization [arXiv:1412.6980] [Google Scholar]
  23. Kirillov, A., Girshick, R., He, K., & Dollár, P. 2019, Panoptic Feature Pyramid Networks [arXiv:1901.02446] [Google Scholar]
  24. Kukačka, J., Golkov, V., & Cremers, D. 2017, ArXiv e-prints [arXiv:1710.10686] [Google Scholar]
  25. Kurucz, R. L. 1970, SAO Special report, 309 [Google Scholar]
  26. Lanz, T., & Hubeny, I. 2003, ApJS, 146, 417 [NASA ADS] [CrossRef] [Google Scholar]
  27. Lanz, T., & Hubeny, I. 2007, ApJS, 169, 83 [CrossRef] [Google Scholar]
  28. LeCun, Y., Boser, B., Denker, J. S., et al. 1989, Neural Comput., 1, 541 [NASA ADS] [CrossRef] [Google Scholar]
  29. Lin, T. Y., Dollár, P., Girshick, R., et al. 2017, Feature Pyramid Networks for Object Detection [arXiv:1612.03144] [Google Scholar]
  30. Long, J., Shelhamer, E., & Darrell, T. 2015, Fully Convolutional Networks for Semantic Segmentation [arXiv:1411.4038] [Google Scholar]
  31. Mahabal, A., Rebbapragada, U., Walters, R., et al. 2019, PASP, 131, 038002 [NASA ADS] [CrossRef] [Google Scholar]
  32. Majewski, S. R., Schiavon, R. P., Frinchaboy, P. M., et al. 2017, AJ, 154, 94 [NASA ADS] [CrossRef] [Google Scholar]
  33. Negueruela, I., Steele, I. A., & Bernabeu, G. 2004, Astron. Nachr., 325, 749 [Google Scholar]
  34. Nesterov, Y. E. 1983, Dokl. akad. nauk Sssr, 269, 543 [Google Scholar]
  35. Newell, A., Yang, K., & Deng, J. 2016, Stacked Hourglass Networks for Human Pose Estimation [arXiv:1603.06937] [Google Scholar]
  36. Nissen, P. E., Christensen-Dalsgaard, J., Mosumgaard, J. R., et al. 2020, A&A, 640, A81 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  37. Noh, H., Hong, S., & Han, B. 2015, Learning Deconvolution Network for Semantic Segmentation [arXiv:1505.04366] [Google Scholar]
  38. Radosavovic, I., Prateek Kosaraju, R., Girshick, R., He, K., & Dollár, P. 2020, ArXiv e-prints [arXiv:2003.13678] [Google Scholar]
  39. Ronneberger, O., Fischer, P., & Brox, T. 2015, U-Net: Convolutional Networks for Biomedical Image Segmentation [arXiv:1505.04597] [Google Scholar]
  40. Royer, F. 2009, On the Rotation of A-Type Stars, 765, 207 [NASA ADS] [CrossRef] [Google Scholar]
  41. Savitzky, A., & Golay, M. J. E. 1964, Anal. Chem., 36, 1627 [Google Scholar]
  42. Scherer, D., Müller, A., & Behnke, S. 2010, in International Conference on Artificial Neural Networks (Springer), 92 [Google Scholar]
  43. Schröder, C., Reiners, A., & Schmitt, J. H. M. M. 2009, A&A, 493, 1099 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  44. Simonyan, K., & Zisserman, A. 2015, Very Deep Convolutional Networks for Large-Scale Image Recognition [arXiv:1409.1556] [Google Scholar]
  45. Swihart, S. J., Garcia, E. V., Stassun, K. G., et al. 2017, AJ, 153, 16 [Google Scholar]
  46. Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nat. Methods, 17, 261 [Google Scholar]
  47. Škoda, P., Podsztavek, O., & Tvrdík, P. 2020, A&A, 643, A122 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  48. Walborn, N. R. 1973, AJ, 78, 1067 [NASA ADS] [CrossRef] [Google Scholar]
  49. Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. 2016, ArXiv e-prints [arXiv:1611.05431] [Google Scholar]
  50. Xu, X., Cisewski-Kehe, J., Davis, A. B., Fischer, D. A., & Brewer, J. M. 2019, AJ, 157, 243 [NASA ADS] [CrossRef] [Google Scholar]
  51. Zhao, G., Zhao, Y., Chu, Y., Jing, Y., & Deng, L. 2012, LAMOST Spectral Survey [arXiv:1206.3569] [Google Scholar]
  52. Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. 2017, Pyramid Scene Parsing Network [arXiv:1612.01105] [Google Scholar]
  53. Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., & Liang, J. 2018, UNet++: A Nested U-Net Architecture for Medical Image Segmentation [arXiv:1807.10165] [Google Scholar]
  54. Zorec, J., & Royer, F. 2012, A&A, 537, A120 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.