Free Access
Issue
A&A
Volume 632, December 2019
Article Number A56
Number of page(s) 18
Section Catalogs and data
DOI https://doi.org/10.1051/0004-6361/201936006
Published online 27 November 2019
  1. Abolfathi, B., Aguado, D., Aguilar, G., et al. 2018, ApJS, 235, 42 [NASA ADS] [CrossRef] [Google Scholar]
  2. Abraham, S., Philip, N., Kembhavi, A., Wadadekar, Y. G., & Sinha, R. 2012, MNRAS, 419, 80 [NASA ADS] [CrossRef] [Google Scholar]
  3. Agnello, A., & Spiniello, C. 2019, MNRAS, 489, 2525 [NASA ADS] [CrossRef] [Google Scholar]
  4. Agnello, A., Kelly, B. C., Treu, T., & Marshall, P. J. 2015, MNRAS, 448, 1446 [NASA ADS] [CrossRef] [Google Scholar]
  5. Agnello, A., Sonnenfeld, A., Suyu, S. H., et al. 2016, MNRAS, 458, 3830 [NASA ADS] [CrossRef] [Google Scholar]
  6. Agnello, A., Schechter, P. L., Morgan, N. D., et al. 2018a, MNRAS, 475, 2086 [NASA ADS] [CrossRef] [Google Scholar]
  7. Agnello, A., Lin, H., Kuropatkin, N., et al. 2018b, MNRAS, 479, 4345 [NASA ADS] [CrossRef] [Google Scholar]
  8. Akhmetov, V., Fedorov, P., Velichko, A., & Shulga, V. 2017, MNRAS, 469, 763 [NASA ADS] [Google Scholar]
  9. Anguita, T., Schmidt, R. W., Turner, E. L., et al. 2008, A&A, 480, 327 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  10. Anguita, T., Schechter, P. L., Kuropatkin, N., et al. 2018, MNRAS, 480, 5017 [NASA ADS] [Google Scholar]
  11. Assef, R. J., Stern, D., Kochanek, C. S., et al. 2013, ApJ, 772, 26 [NASA ADS] [CrossRef] [Google Scholar]
  12. Bachchan, R. K., Hobbs, D., & Lindegren, L. 2016, A&A, 589, A71 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  13. Bai, Y., Liu, J., Wang, S., & Yang, F. 2019, AJ, 157, 9 [NASA ADS] [CrossRef] [Google Scholar]
  14. Baldry, I. K., Liske, J., Brown, M. J. I., et al. 2018, MNRAS, 474, 3875 [NASA ADS] [CrossRef] [Google Scholar]
  15. Ball, N. M., Brunner, R. J., Myers, A. D., & Tcheng, D. 2006, ApJ, 650, 497 [NASA ADS] [CrossRef] [Google Scholar]
  16. Barrientos, F., Pichara, K., Troncoso, P., et al. 2018, VST in the Era of the Large Sky Surveys, 9 [Google Scholar]
  17. Bate, N. F., Floyd, D. J. E., Webster, R. L., & Wyithe, J. S. B. 2011, ApJ, 731, 71 [NASA ADS] [CrossRef] [Google Scholar]
  18. Blanton, M., Bershady, M., Abolfathi, B., et al. 2017, AJ, 154, 28 [NASA ADS] [CrossRef] [Google Scholar]
  19. Braibant, L., Hutsemékers, D., Sluse, D., Anguita, T., & García-Vergara, C. J. 2014, A&A, 565, L11 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  20. Breiman, L. 2001, Mach. Learn., 45, 5 [CrossRef] [Google Scholar]
  21. Brescia, M., Cavuoti, S., & Longo, G. 2015, MNRAS, 450, 3893 [NASA ADS] [CrossRef] [Google Scholar]
  22. Cabanac, R. A., Alard, C., Dantel-Fort, M., et al. 2007, A&A, 461, 813 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  23. Carrasco, D., Barrientos, L., Pichara, K., et al. 2015, A&A, 584, A44 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  24. Capaccioli, M., & Schipani, P. 2011, The Messenger, 146, 2 [NASA ADS] [Google Scholar]
  25. Capaccioli, M., Schipani, P., de Paris, G., et al. 2012, Science from the Next Generation Imaging and Spectroscopic Surveys, 1 [Google Scholar]
  26. Chen, T., & Guestrin, C. 2016, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785 [Google Scholar]
  27. Chiu, K., Richards, G., Hewett, P., & Maddox, N. 2007, MNRAS, 375, 1180 [NASA ADS] [CrossRef] [Google Scholar]
  28. Cortes, C., & Vapnik, V. 1995, Mach. Learn., 20, 273 [Google Scholar]
  29. Cutri, R., Wright, E., Conrow, T., et al. 2013, Explanatory Supplement to the AllWISE Data Release Products, Tech. rep. [Google Scholar]
  30. D’Isanto, A., Cavuoti, S., Gieseke, F., & Polsterer, K. 2018, A&A, 616, A97 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  31. de Jong, J. T. A., Verdoes Kleijn, G. A., Kuijken, K. H., & Valentijn, E. A. 2013, Exp. Astron., 35, 25 [Google Scholar]
  32. de Jong, J. T. A., Verdoes Kleijn, G. A., Erben, T., et al. 2017, A&A, 604, A134 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  33. Ding, X., Treu, T., Suyu, S. H., et al. 2017, MNRAS, 465, 4634 [NASA ADS] [CrossRef] [Google Scholar]
  34. Donley, J. L., Koekemoer, A. M., Brusa, M., et al. 2012, ApJ, 748, 142 [NASA ADS] [CrossRef] [Google Scholar]
  35. Dorogush, A. V., Ershov, V., & Gulin, A. 2018, ArXiv e-prints [arXiv:1810.11363] [Google Scholar]
  36. Driver, S. P., Norberg, P., Baldry, I. K., et al. 2009, Geophys., 50, 12 [Google Scholar]
  37. Duda, R. O., & Hart, P. E. 1973, Pattern Classification and Scene Analysis (J. Wiley & Sons) [Google Scholar]
  38. Edge, A., Sutherland, W., Kuijken, K., et al. 2013, The Messenger, 154, 32 [NASA ADS] [Google Scholar]
  39. Elting, C., Bailer-Jones, C. A. L., & Smith, K. W. 2008, Am. Inst. Phys. Conf. Ser., 1082, 9 [NASA ADS] [Google Scholar]
  40. Elvis, M., Wilkes, B. J., McDowell, J. C., et al. 1994, ApJS, 95, 1 [NASA ADS] [CrossRef] [Google Scholar]
  41. Eyer, L., & Blake, C. 2005, MNRAS, 358, 30 [NASA ADS] [CrossRef] [Google Scholar]
  42. Friedman, J. H. 2000, Ann. Stat., 29, 1189 [Google Scholar]
  43. Gaia Collaboration (Brown, A., et al.) 2018a, A&A, 616, A1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  44. Gaia Collaboration (Mignard, F., et al.) 2018b, A&A, 616, A14 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  45. Gieseke, F., Polsterer, K. L., Thom, A., et al. 2011, 2010 Ninth International Conference on Machine Learning and Applications, 352 [Google Scholar]
  46. Gilman, D., Birrer, S., Treu, T., Keeton, C. R., & Nierenberg, A. 2018, MNRAS, 481, 819 [NASA ADS] [CrossRef] [Google Scholar]
  47. Guerras, E., Mediavilla, E., Jimenez-Vicente, J., et al. 2013, ApJ, 778, 123 [NASA ADS] [CrossRef] [Google Scholar]
  48. Guo, S., Qi, Z., Liao, S., et al. 2018, A&A, 618, A144 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  49. Hartley, P., Flamary, R., Jackson, N., Tagore, A. S., & Metcalf, R. B. 2017, MNRAS, 471, 3378 [NASA ADS] [CrossRef] [Google Scholar]
  50. Haehnelt, M. G., & Kauffmann, G. 2000, MNRAS, 318, L35 [NASA ADS] [CrossRef] [Google Scholar]
  51. Hernitschek, N., Schlafly, E., Branimir, S., et al. 2016, ApJ, 817, 73 [NASA ADS] [CrossRef] [Google Scholar]
  52. Hopkins, P. F., Hernquist, L., Cox, T. J., Robertson, B., & Springel, V. 2006, ApJS, 163, 50 [NASA ADS] [CrossRef] [Google Scholar]
  53. Ivezić, Ž, & LSST Science Collaboration 2013, LSST Science Requirements Document, http://ls.st/LPM-17 [Google Scholar]
  54. Jacobs, C., Collett, T., Glazebrook, K., et al. 2019, MNRAS, 484, 5330 [NASA ADS] [CrossRef] [Google Scholar]
  55. Jarrett, T. H., Cohen, M., Masci, F., et al. 2011, ApJ, 735, 112 [NASA ADS] [CrossRef] [Google Scholar]
  56. Jin, X., Zhang, Y., & Zhang, J. 2019, MNRAS, 485, 4539 [NASA ADS] [CrossRef] [Google Scholar]
  57. Kauffmann, G., & Haehnelt, M. 2000, MNRAS, 311, 576 [NASA ADS] [CrossRef] [Google Scholar]
  58. Keeton, C. R., & Moustakas, L. A. 2009, ApJ, 699, 1720 [NASA ADS] [CrossRef] [Google Scholar]
  59. Khramtsov, V., & Akhmetov, V. 2018, Proceedings of a IEEE XIIIth International Scientific and Technical Conference “CSIT”, 72 [Google Scholar]
  60. Khramtsov, V., Akhmetov, V., & Fedorov, P. 2018, A&A, submitted [Google Scholar]
  61. Kim, D.-W., Protopapas, P., Byun, Y.-I., et al. 2011, ApJ, 735, 68 [NASA ADS] [CrossRef] [Google Scholar]
  62. Kovács, A., & Szapudi, I. 2015, MNRAS, 448, 1305 [NASA ADS] [CrossRef] [Google Scholar]
  63. Krakowski, T., Małek, K., Bilicki, M., et al. 2016, A&A, 596, A39 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  64. Krakowski, T., Małek, K., Bilicki, M., Siudek, M., & Pollo, A. 2018, Polish Astron. Soc., 7, 252 [Google Scholar]
  65. Kochanek, C. S. 2006, in Gravitational Lensing: Strong, Weak and Micro, eds. G. Meylan, P. Jetzer, & P. North (Berlin: Springer-Verlag) [Google Scholar]
  66. Koopmans, L. V. E., Treu, T., Bolton, A. S., Burles, S., & Moustakas, L. A. 2006, ApJ, 649, 599 [NASA ADS] [CrossRef] [Google Scholar]
  67. Koopmans, L. V. E., Bolton, A., Treu, T., et al. 2009, ApJ, 703, L51 [NASA ADS] [CrossRef] [Google Scholar]
  68. Krone-Martins, A., Delchambre, L., Wertz, O., et al. 2018, A&A, 616, L11 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  69. Kuijken, K. 2008, A&A, 482, 1053 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  70. Kuijken, K., Heymans, C., Hildebrandt, H., et al. 2015, MNRAS, 454, 3500 [NASA ADS] [CrossRef] [Google Scholar]
  71. Kuijken, K., Heymans, C., Dvornik, A., et al. 2019, A&A, 625, A2 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  72. Lacy, M., Storrie-Lombardi, L. J., Sajina, A., et al. 2004, ApJS, 154, 166 [NASA ADS] [CrossRef] [Google Scholar]
  73. Lanusse, F., Ma, Q., Li, N., et al. 2018, MNRAS, 473, 3895 [NASA ADS] [CrossRef] [Google Scholar]
  74. Laureijs, R., Amiaux, J., Arduini, S., et al. 2011, ArXiv e-prints [arXiv:1110.3193] [Google Scholar]
  75. Liao, K., Ding, X., Biesiada, M., Fan, X.-L., & Zhu, Z.-H. 2018, ApJ, 867, 69 [NASA ADS] [CrossRef] [Google Scholar]
  76. Lindegren, L., Hernandez, J., Bombrun, A., et al. 2018, A&A, 616, A2 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  77. Lemon, C. A., Auger, M. W., McMahon, R. G., & Koposov, S. E. 2017, MNRAS, 472, 5023 [NASA ADS] [CrossRef] [Google Scholar]
  78. Lemon, C., Auger, M., McMahon, R., & Ostrovski, F. 2018, MNRAS, 479, 5060 [NASA ADS] [CrossRef] [Google Scholar]
  79. Mansour, Y. 1997, Proceedings of the 14th International Conference on Machine Learning, 195 [Google Scholar]
  80. Mateos, S., Alonso-Herrero, A., Carrera, F. J., et al. 2012, MNRAS, 426, 3271 [NASA ADS] [CrossRef] [Google Scholar]
  81. Matthews, B. 1975, Biochim. Biophys. Acta (BBA)– Protein Struct., 405, 442 [CrossRef] [Google Scholar]
  82. Metcalf, R. B., Meneghetti, M., Avestruz, C., et al. 2018, A&A, 625, A119 [Google Scholar]
  83. Motta, V., Mediavilla, E., Falco, E., & Muñoz, J. A. 2012, ApJ, 755, 82 [NASA ADS] [CrossRef] [Google Scholar]
  84. Nakoneczny, S., Bilicki, M., Solarz, A., et al. 2019, A&A, 624, A13 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  85. Nolte, A., Wang, L., Bilicki, M., Holwerda, B., & Biehl, M. 2019, Neurocomputing, 342, 172 [CrossRef] [Google Scholar]
  86. Oguri, M., & Marshall, P. J. 2010, MNRAS, 405, 2579 [NASA ADS] [Google Scholar]
  87. Oguri, M., Inada, N., Pindor, B., et al. 2006, AJ, 132, 999 [NASA ADS] [CrossRef] [Google Scholar]
  88. Oguri, M., Rusu, C. E., & Falco, E. E. 2014, MNRAS, 439, 2494 [NASA ADS] [CrossRef] [Google Scholar]
  89. Ostrovski, F., Lemon, C., Auger, M., et al. 2018, MNRAS, 473, L116 [NASA ADS] [CrossRef] [Google Scholar]
  90. Paraficz, D., Courbin, F., Tramacere, A., et al. 2016, A&A, 592, A75 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  91. Peters, C. M., Richards, G. T., Myers, A. D., et al. 2015, ApJ, 811, 95 [NASA ADS] [CrossRef] [Google Scholar]
  92. Petrillo, C. E., Tortora, C., Chatterjee, S., et al. 2017, MNRAS, 472, 1129 [NASA ADS] [CrossRef] [Google Scholar]
  93. Petrillo, C. E., Tortora, C., Chatterjee, S., et al. 2019a, MNRAS, 482, 807 [NASA ADS] [Google Scholar]
  94. Petrillo, C. E., Tortora, C., Vernardos, G., et al. 2019b, MNRAS, 484, 3879 [NASA ADS] [CrossRef] [Google Scholar]
  95. Proft, S., & Wambsganss, J. 2015, A&A, 574, A46 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  96. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., & Gulin, A. 2018, Adv. Neural Inf. Process. Syst., 31, 6638 [Google Scholar]
  97. Quinlan, J. R. 1986, Mach. Learn., 1, 81 [Google Scholar]
  98. Refsdal, S. 1964, MNRAS, 128, 307 [NASA ADS] [CrossRef] [Google Scholar]
  99. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. 1986, Parallel Distributed Processing: Explorations in the Microstructure of Cognition (Cambridge, MA, USA: MIT Press), 1, 318 [Google Scholar]
  100. Robin, A., Luri, X., Reylé, C., et al. 2012, A&A, 543, A100 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  101. Rusu, C. E., Oguri, M., Minowa, Y., et al. 2014, MNRAS, 444, 2561 [NASA ADS] [CrossRef] [Google Scholar]
  102. Rusu, C. E., Berghea, C. T., Fassnacht, C. D., et al. 2019, MNRAS, 486, 4987 [NASA ADS] [Google Scholar]
  103. Shankar, F., Weinberg, D. H., & Miralda-Escudé, J. 2009, ApJ, 690, 20 [NASA ADS] [CrossRef] [Google Scholar]
  104. Shen, Y., Strauss, M. A., Ross, N. P., et al. 2009, ApJ, 697, 1656 [NASA ADS] [CrossRef] [Google Scholar]
  105. Schechter, P. L., & Wambsganss, J. 2002, ApJ, 580, 685 [NASA ADS] [CrossRef] [Google Scholar]
  106. Schechter, P. L., Anguita, T., Morgan, N. D., Read, M., & Shanks, T. 2018, Res. Notes AAS, 2, 21 [NASA ADS] [CrossRef] [Google Scholar]
  107. Schindler, J.-T., Fan, X., McGreer, I. D., et al. 2017, ApJ, 851, 13 [NASA ADS] [CrossRef] [Google Scholar]
  108. Schindler, J.-T., Fan, X., McGreer, I. D., et al. 2018, ApJ, 863, 144 [NASA ADS] [CrossRef] [Google Scholar]
  109. Sergeyev, A., Spiniello, C., Khramtsov, V., et al. 2018, Res. Notes AAS, 2, 189 [NASA ADS] [CrossRef] [Google Scholar]
  110. Sluse, D., Schmidt, R., Courbin, F., et al. 2011, A&A, 528, A100 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  111. Spiniello, C., Koopmans, L. V. E., Trager, S. C., Czoske, O., & Treu, T. 2011, MNRAS, 417, 3000 [NASA ADS] [CrossRef] [Google Scholar]
  112. Spiniello, C., Koopmans, L. V. E., Trager, S. C., et al. 2015, MNRAS, 452, 2434 [NASA ADS] [CrossRef] [Google Scholar]
  113. Spiniello, C., Agnello, A., Napolitano, N. R., et al. 2018, MNRAS, 480, 1163 [NASA ADS] [CrossRef] [Google Scholar]
  114. Spiniello, C., Sergeyev, A., Marchetti, L., et al. 2019, MNRAS, 485, 5086 [NASA ADS] [Google Scholar]
  115. Stern, D., Eisenhardt, P., Gorjian, V., et al. 2005, ApJ, 631, 163 [NASA ADS] [CrossRef] [Google Scholar]
  116. Stern, D., Assef, R. J., Benford, D. J., et al. 2012, ApJ, 753, 30 [NASA ADS] [CrossRef] [Google Scholar]
  117. Suyu, S. H., Treu, T., Hilbert, S., et al. 2014, ApJ, 788, L35 [NASA ADS] [CrossRef] [Google Scholar]
  118. Suyu, S. H., Bonvin, V., Courbin, F., et al. 2017, MNRAS, 468, 2590 [Google Scholar]
  119. Treu, T., Agnello, A., & Strides Team 2015, Am. Astron. Soc., 225, 318.04 [NASA ADS] [Google Scholar]
  120. Tinney, C. G. 1995, MNRAS, 277, 609 [NASA ADS] [CrossRef] [Google Scholar]
  121. Tinney, C. G., Da Costa, G. S., & Zinnecker, H. 1997, MNRAS, 285, 111 [NASA ADS] [CrossRef] [Google Scholar]
  122. Vakili, M., et al. 2019, MNRAS, in press [Google Scholar]
  123. Vapnik, V. 1995, The Nature of Statistical Learning Theory (New York, USA: Springer-Verlag) [Google Scholar]
  124. Viquar, M., Basak, S., Dasgupta, A., Agrawal, S., & Saha, S. 2018, ArXiv e-prints [arXiv:1804.05051] [Google Scholar]
  125. Walsh, D., Carswell, R. F., & Weymann, R. J. 1979, Nature, 279, 381 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  126. Werner, M. W., Roellig, T. L., Low, F. J., et al. 2004, ApJS, 154, 1 [NASA ADS] [CrossRef] [Google Scholar]
  127. Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868 [NASA ADS] [CrossRef] [Google Scholar]
  128. Wright, A. H., Hildebrandt, H., Kuijken, K., et al. 2019, A&A, 632, A34 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  129. Wyithe, J. S. B., & Loeb, A. 2003, ApJ, 595, 614 [NASA ADS] [CrossRef] [Google Scholar]
  130. Zackrisson, E., & Riehm, T. 2010, Adv. Astron., 2010, 478910 [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.