Free Access
Issue
A&A
Volume 628, August 2019
Article Number A129
Number of page(s) 14
Section Numerical methods and codes
DOI https://doi.org/10.1051/0004-6361/201935211
Published online 20 August 2019
  1. Anderson, L., Aubourg, E., Bailey, S., et al. 2012, MNRAS, 427, 3435 [Google Scholar]
  2. Angermueller, C., Pärnamaa, T., Parts, L., & Stegle, O. 2016, Mol. Syst. Biol., 12, 878 [Google Scholar]
  3. Auld, T., Bridges, M., Hobson, M. P., & Gull, S. F. 2007, MNRAS, 376, L11 [NASA ADS] [CrossRef] [Google Scholar]
  4. Baccigalupi, C., Bedini, L., Burigana, C., et al. 2000, MNRAS, 318, 769 [NASA ADS] [CrossRef] [Google Scholar]
  5. Boomsma, W., & Frellsen, J. 2017, in Advances in Neural Information Processing Systems 30, eds. I. Guyon, U. V. Luxburg, S. Bengio, et al. (Curran Associates, Inc.), 3433 [Google Scholar]
  6. Bryan, G. L., Norman, M. L., O’Shea, B. W., et al. 2014, ApJS, 211, 19 [NASA ADS] [CrossRef] [Google Scholar]
  7. Caldeira, J., Wu, W. L. K., Nord, B., et al. 2019, Astron. Comput., 28, 100307 [CrossRef] [Google Scholar]
  8. Cartwright, H. M. 2008, Methods in Molecular Biology™ (Humana Press), 1 [Google Scholar]
  9. Cascianelli, S., Scialpi, M., Amici, S., et al. 2017, Curr. Alzheimer Res., 14, 198 [CrossRef] [Google Scholar]
  10. Cha, K. H., Hadjiiski, L., Samala, R. K., et al. 2016, Med. Phys., 43, 1882 [NASA ADS] [CrossRef] [Google Scholar]
  11. Cohen, T. S., Geiger, M., Koehler, J., & Welling, M. 2018, ArXiv e-prints [arXiv:1801.10130] [Google Scholar]
  12. Collister, A. A., & Lahav, O. 2004, PASP, 116, 345 [NASA ADS] [CrossRef] [Google Scholar]
  13. Coors, B., Condurache, A. P., & Geiger, A. 2018, European Conference on Computer Vision (ECCV) [Google Scholar]
  14. Dieleman, S., Willett, K. W., & Dambre, J. 2015, MNRAS, 450, 1441 [NASA ADS] [CrossRef] [Google Scholar]
  15. Fermi Collaboration 2015, ApJS, 218, 23 [Google Scholar]
  16. Górski, K. M., Hivon, E., Banday, A. J., et al. 2005, ApJ, 622, 759 [NASA ADS] [CrossRef] [Google Scholar]
  17. Graff, P., Feroz, F., Hobson, M. P., & Lasenby, A. 2014, MNRAS, 441, 1741 [NASA ADS] [CrossRef] [Google Scholar]
  18. Grain, J., Tristram, M., & Stompor, R. 2009, Phys. Rev. D, 79, 123515 [Google Scholar]
  19. He, K., Zhang, X., Ren, S., & Sun, J. 2016, in Computer Vision – ECCV 2016, eds. B. Leibe, J. Matas, N. Sebe, & M. Welling (Cham: Springer International Publishing), 630 [CrossRef] [Google Scholar]
  20. He, S., Ravanbakhsh, S., & Ho, S. 2018, International Conference on Learning Representations [Google Scholar]
  21. Hu, H. N., Lin, Y. C., Liu, M. Y., et al. 2017, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [Google Scholar]
  22. Hyun-jung, K., & Kyung-shik, S. 2007, Appl. Soft Comput., 7, 569 [CrossRef] [Google Scholar]
  23. IceCube Collaboration 2014, Phys. Rev. Lett., 113, 101101 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  24. Kasabov, N. K. 2014, Neural Netw., 52, 62 [CrossRef] [Google Scholar]
  25. Krizhevsky, A., Sutskever, I., & Hinton, G. E. 2012, Proceedings of the 25th International Conference on Neural Information Processing Systems – Volume 1, NIPS’12 (USA: Curran Associates Inc.), 1097 [Google Scholar]
  26. Lam, M. 2004, Decis. Support Syst., 37, 567 [CrossRef] [Google Scholar]
  27. Lewis, A., & Bridle, S. 2002, Phys. Rev. D, 66, 103511 [NASA ADS] [CrossRef] [Google Scholar]
  28. Liu, F., Zhou, Z., Jang, H., et al. 2017, Magn. Reson. Med., 79, 2379 [CrossRef] [Google Scholar]
  29. Lodhi, H. 2012, Comput. Stat., 4, 455 [CrossRef] [Google Scholar]
  30. Majeau, C., Agol, E., & Cowan, N. B. 2012, ApJ, 747, L20 [NASA ADS] [CrossRef] [Google Scholar]
  31. Percival, W. J., Cole, S., Eisenstein, D. J., et al. 2007, MNRAS, 381, 1053 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  32. Perraudin, N., Defferrard, M., Kacprzak, T., & Sgier, R. 2019, Astron. Comput., 27, 130 [NASA ADS] [CrossRef] [Google Scholar]
  33. Planck Collaboration I. 2016, A&A, 594, A1 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  34. Planck Collaboration VI. 2018, A&A, submitted [arXiv:1807.06209] [Google Scholar]
  35. Robinson, T. D., Meadows, V. S., Crisp, D., et al. 2011, Astrobiology, 11, 393 [NASA ADS] [CrossRef] [Google Scholar]
  36. Sergeev, A., & Balso, M. D. 2018, ArXiv e-prints [arXiv:1802.05799] [Google Scholar]
  37. Shahram, M., & Donoho, D. 2007, Proceedings of SPIE – The International Society for Optical Engineering, 6701 [Google Scholar]
  38. Singer, L. P., & Price, L. R. 2016, Phys. Rev. D, 93, 024013 [NASA ADS] [CrossRef] [Google Scholar]
  39. Su, Y. C., & Grauman, K. 2017, in Advances in Neural Information Processing Systems 30, eds. I. Guyon, U. V. Luxburg, S. Bengio, et al. (Curran Associates, Inc.), 529 [Google Scholar]
  40. Sullivan, P. W., Winn, J. N., Berta-Thompson, Z. K., et al. 2015, ApJ, 809, 77 [NASA ADS] [CrossRef] [Google Scholar]
  41. Tamura, K., Uenoyama, K., Iitsuka, S., & Matsuo, Y. 2018, Trans. Jpn. Soc. Artif. Intell., 33, A [CrossRef] [Google Scholar]
  42. Tristram, M., Macías-Pérez, J. F., Renault, C., & Santos, D. 2005, MNRAS, 358, 833 [NASA ADS] [CrossRef] [Google Scholar]
  43. Virmani, J., Kumar, V., Kalra, N., & Khandelwal, N. 2014, J. Digit. Imaging, 27, 520 [CrossRef] [Google Scholar]
  44. Westerteiger, R., Gerndt, A., & Hamann, B. 2012, in OpenAccess Series in Informatics (OASIcs), Vol. 27, Visualization of Large and Unstructured Data Sets: Applications in Geospatial Planning, Modeling and Engineering – Proceedings of IRTG 1131 Workshop 2011, eds. C. Garth, A. Middel, & H. Hagen (Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik), 13 [Google Scholar]
  45. Xiao, J., Ehinger, K., Oliva, A., & Torralba, A. 2012, Proceedings, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2695 [Google Scholar]
  46. Yan, H., & Ouyang, H. 2017, Wirel. Pers. Commun., 102, 683 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.