Free Access
Volume 595, November 2016
Article Number A82
Number of page(s) 11
Section Catalogs and data
Published online 03 November 2016
  1. Alonso-García, J., Dékány, I., Catelan, M., et al. 2015, AJ, 149, 99 [NASA ADS] [CrossRef] [Google Scholar]
  2. Angeloni, R., Contreras Ramos, R., Catelan, M., et al. 2014, A&A, 567, A100 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  3. Armstrong, D. J., Kirk, J., Lam, K. W. F., et al. 2016, MNRAS, 456, 2260 [NASA ADS] [CrossRef] [Google Scholar]
  4. Bailey, S. I. 1902, Annals of Harvard College Observatory, 38, 1 [Google Scholar]
  5. Brett, D. R., West, R. G., & Wheatley, P. J. 2004, MNRAS, 353, 369 [NASA ADS] [CrossRef] [Google Scholar]
  6. Catelan, M., & Smith, H. A. 2015, Pulsating Stars (Wiley-VCH) [Google Scholar]
  7. Catelan, M., Minniti, D., Lucas, P. W., et al. 2013, ArXiv e-prints [arXiv:1310.1996] [Google Scholar]
  8. Catelan, M., Dekany, I., Hempel, M., & Minniti, D. 2014, ArXiv e-prints [arXiv:arXiv:1406.6727] [Google Scholar]
  9. Debosscher, J., Sarro, L. M., Aerts, C., et al. 2007, A&A, 475, 1159 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  10. Dékány, I., Minniti, D., Hajdu, G., et al. 2015, ApJ, 799, L11 [NASA ADS] [CrossRef] [Google Scholar]
  11. Dubath, P., Rimoldini, L., Süveges, M., et al. 2011, MNRAS, 414, 2602 [NASA ADS] [CrossRef] [Google Scholar]
  12. Freund, Y., Schapire, R. E., et al. 1996, in Proc. of ICML, 96, 148 [Google Scholar]
  13. Gonzalez, O. A., Rejkuba, M., Zoccali, M., et al. 2012, A&A, 543, A13 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  14. Graham, M. J., Drake, A. J., Djorgovski, S. G., et al. 2013, MNRAS, 434, 3423 [NASA ADS] [CrossRef] [Google Scholar]
  15. Gran, F., Minniti, D., Saito, R. K., et al. 2015, A&A, 575, A114 [Google Scholar]
  16. Gran, F., Minniti, D., Saito, R. K., et al. 2016, A&A, 591, A145 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  17. Hastie, T. J., Tibshirani, R. J., & Friedman, J. H. 2009, The elements of statistical learning: data mining, inference, and prediction, Springer series in statistics (New York: Springer) [Google Scholar]
  18. Irwin, M. J., Lewis, J., Hodgkin, S., et al. 2004, in Optimizing Scientific Return for Astronomy through Information Technologies, eds. P. J. Quinn, & A. Bridger, SPIE Conf. Ser., 5493, 411 [Google Scholar]
  19. Ivezic, Z., Tyson, J. A., Abel, B., et al. 2008, ArXiv e-prints [arXiv:0805.2366] [Google Scholar]
  20. Ivezić, Ż., Connolly, A., VanderPlas, J., & Gray, A. 2013, Statistics, Data Mining, and Machine Learning in Astronomy (Princeton University Press) [Google Scholar]
  21. Kim, D.-W., & Bailer-Jones, C. A. L. 2016, A&A, 587, A18 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  22. Minniti, D., Lucas, P. W., Emerson, J. P., et al. 2010, New Astron., 15, 433 [NASA ADS] [CrossRef] [Google Scholar]
  23. Paegert, M., Stassun, K. G., & Burger, D. M. 2014, AJ, 148, 31 [NASA ADS] [CrossRef] [Google Scholar]
  24. R Core Team. 2015, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria [Google Scholar]
  25. Richards, J. W., Starr, D. L., Butler, N. R., et al. 2011, ApJ, 733, 10 [NASA ADS] [CrossRef] [Google Scholar]
  26. Richards, J. W., Starr, D. L., Miller, A. A., et al. 2012a, ApJS, 203, 32 [Google Scholar]
  27. Richards, J. W., Starr, D. L., Brink, H., et al. 2012b, ApJ, 744, 192 [NASA ADS] [CrossRef] [Google Scholar]
  28. Samus, N. N., Durlevich, O. V., et al. 2009, VizieR Online Data Catalog: B/gcvs [Google Scholar]
  29. Schwarzschild, M. 1940, Harvard College Observatory Circular, 437, 1 [NASA ADS] [Google Scholar]
  30. Shapley, H. 1918, ApJ, 48, 154 [NASA ADS] [CrossRef] [Google Scholar]
  31. Stetson, P. B. 1996, PASP, 108, 851 [NASA ADS] [CrossRef] [Google Scholar]
  32. Szymański, M. K., Udalski, A., Soszyński, I., et al. 2011, Acta Astron., 61, 83 [NASA ADS] [Google Scholar]
  33. Zechmeister, M., & Kürster, M. 2009, A&A, 496, 577 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  34. Zhu, J., Zou, H., Rosset, S., & Hastie, T. 2009, Statistics and its Interface, 2, 349 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.