Issue |
A&A
Volume 567, July 2014
|
|
---|---|---|
Article Number | A100 | |
Number of page(s) | 11 | |
Section | Catalogs and data | |
DOI | https://doi.org/10.1051/0004-6361/201423904 | |
Published online | 21 July 2014 |
The VVV Templates Project Towards an automated classification of VVV light-curves
I. Building a database of stellar variability in the near-infrared
1
Instituto de Astrofísica, Pontificia Universidad Católica de
Chile,
Av. Vicuña Mackenna 4860, 782-0436
Macul, Santiago
Chile
e-mail:
rangelon@astro.puc.cl
2
Centro de Astro-Ingeniería, Pontificia Universidad Católica de
Chile, Santiago,
Chile
3
Max-Planck-Institut für Astronomie, Königstuhl 17, 69117
Heidelberg,
Germany
4
Millennium Institute of Astrophysics, Santiago, Chile
5
Computer Science Department, Pontificia Universidad Católica de
Chile, Santiago,
Chile
6
Leiden Observatory, Leiden, The
Netherlands
7
Instituto de Astrofísica de Canarias (IAC),
Vía Láctea s/n, 38200 La Laguna,
Tenerife, Canary
Islands, Spain
8
European Southern Observatory, Av. Alonso de Córdoba 3107, 19001 Casilla,
Santiago,
Chile
9
Instituto de Física y Astronomía, Universidad de
Valparaíso, Av. Gran Bretaña 1111,
Playa Ancha, 5030
Casilla,
Chile
10
Centre for Astrophysics Research, University of
Hertfordshire, Hatfield, AL10
9AB, UK
11
Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università
di Padova, Vicolo dell’Osservatorio
3, 35122
Padova,
Italy
12
INAF – Osservatorio Astronomico di Padova, vicolo
dell’Osservatorio 5, 35122
Padova,
Italy
13
Kavli Institute for Astronomy and Astrophysics, Peking
University, Yi He Yuan Lu 5, Hai
Dian District, 100871
Beijing, PR
China
14
Department of Astronomy, Peking University,
Yi He Yuan Lu 5, Hai Dian District,
100871
Beijing, PR
China
15
Facultad de Matematicas, Pontificia Universidad Católica de
Chile, Santiago,
Chile
16
Universidade Federal do Rio Grande do Norte, Campus Universitário Lagoa Nova,
CEP 59078-970, Natal, Brasil
17
Korea National University of Education,
San 7, GangNaeMyeon,
CheongWonGun, 363-791
ChungBuk, The Republic of
Korea
18
Subaru Telescope, National Astronomical Observatory of
Japan, 650 North Aohoku
Place, Hilo,
HI
96720,
USA
19
Nicolaus Copernicus Astronomical Center, Department of
Astrophysics, ul. Rabiańska
8, 87-100
Toruń,
Poland
20
Departamento de Ciencias Físicas, Universidad Andrés
Bello, Av. República
252, Santiago,
Chile
21
Department of Astrophysics, University of La Laguna,
Vía Láctea s/n, 38200 La Laguna,
Tenerife, Canary
Islands, Spain
22
Astronomical Institute, Graduate School of Science, Tohoku
University, 6-3 Aramaki Aoba,
Aoba-ku, Sendai, 980-8578
Miyagi,
Japan
23
Korea Astronomy and Space Science Institute,
Daedeokdae-ro, Yuseong-gu,
305-348
Daejeon, Republic of
Korea
24
NationalAstronomical Observatory, Osawa 2-21-1, Mitaka, Tokyo, Japan
25
Centro de Astrobiología (CSIC-INTA), Ctra. Ajalvir km 4, 28850
Torrejón de Ardoz, Madrid, Spain
26
INAF – Istituto di Astrofisica Spaziale e Fisica Cosmica di
Bologna, via Gobetti 101, 40129
Bologna,
Italy
27
Department of Astronomy, Graduate School of Science, The
University of Tokyo, 7-3-1 Hongo,
Bunkyo-ku, 113-0033
Tokyo,
Japan
28
Research School of Astronomy & Astrophysics, Australian
National University, Mt. Stromlo
Observatory, ACT
2611,
Australia
29
Department of Astrophysics, Nagoya University,
Furo-cho, Chikusa-ku, 464-8602
Nagoya,
Japan
30
Departamento de Ciencias de la Computación, Universidad de
Chile, Casilla 2777, Av. Blanco
Encalada 2120, Santiago, Chile
31
Laboratoire Lagrange (UMR 7293), Université Nice Sophia Antipolis,
CNRS, Observatoire de la Côte d’Azur, BP 4229, 06304
Nice,
France
32
Departamento de Física – ICEx – UFMG, Av. Antônio Carlos, 6627, 30270-901,
Belo Horizonte, MG, Brazil
33
Universidade Federal de Sergipe, Departamento de
Física, Av. Marechal Rondon s/n,
49100-000
São Cristóvão, SE, Brazil
34
South African Astronomical Observatory,
PO Box 9, 7935
Observatory, South
Africa
35
Astrophysics, Cosmology and Gravity Centre, Astronomy Department,
University of Cape Town, 7701
Rondebosch, South
Africa
Received: 29 March 2014
Accepted: 13 May 2014
Context. The Vista Variables in the Vía Láctea (VVV) ESO Public Survey is a variability survey of the Milky Way bulge and an adjacent section of the disk carried out from 2010 on ESO Visible and Infrared Survey Telescope for Astronomy (VISTA). The VVV survey will eventually deliver a deep near-IR atlas with photometry and positions in five passbands (ZYJHKS) and a catalogue of 1−10 million variable point sources – mostly unknown – that require classifications.
Aims. The main goal of the VVV Templates Project, which we introduce in this work, is to develop and test the machine-learning algorithms for the automated classification of the VVV light-curves. As VVV is the first massive, multi-epoch survey of stellar variability in the near-IR, the template light-curves that are required for training the classification algorithms are not available. In the first paper of the series we describe the construction of this comprehensive database of infrared stellar variability.
Methods. First, we performed a systematic search in the literature and public data archives; second, we coordinated a worldwide observational campaign; and third, we exploited the VVV variability database itself on (optically) well-known stars to gather high-quality infrared light-curves of several hundreds of variable stars.
Results. We have now collected a significant (and still increasing) number of infrared template light-curves. This database will be used as a training-set for the machine-learning algorithms that will automatically classify the light-curves produced by VVV. The results of such an automated classification will be covered in forthcoming papers of the series.
Key words: stars: variables: general / surveys / techniques: photometric
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.