Issue |
A&A
Volume 494, Number 2, February I 2009
|
|
---|---|---|
Page(s) | 739 - 768 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361:200809918 | |
Published online | 02 May 2009 |
Automated supervised classification of variable stars*
II. Application to the OGLE database
1
Dpt. de Inteligencia Artificial, UNED, Juan del Rosal, 16, 28040 Madrid, Spain e-mail: lsb@dia.uned.es
2
Instituut voor Sterrenkunde, Catholic University of Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
3
Laboratorio de Astrofísica Espacial y Física Fundamental, INTA, Apartado de Correos 50727, 28080 Madrid, Spain
4
Department of Astrophysics, Radboud University Nijmegen, POBox 9010, 6500 GL Nijmegen, The Netherlands
Received:
7
April
2008
Accepted:
17
May
2008
Context. Scientific exploitation of large variability databases can only be fully optimized if these archives contain, besides the actual observations, annotations about the variability class of the objects they contain. Supervised classification of observations produces these tags, and makes it possible to generate refined candidate lists and catalogues suitable for further investigation.
Aims. We aim to extend and test the classifiers presented in a previous work against an independent dataset. We complement the assessment of the validity of the classifiers by applying them to the set of OGLE light curves treated as variable objects of unknown class. The results are compared to published classification results based on the so-called extractor methods.
Methods. Two complementary analyses are carried out in parallel. In both cases, the original time series of OGLE observations of the Galactic bulge and Magellanic Clouds are processed in order to identify and characterize the frequency components. In the first approach, the classifiers are applied to the data and the results analyzed in terms of systematic errors and differences between the definition samples in the training set and in the extractor rules. In the second approach, the original classifiers are extended with colour information and, again, applied to OGLE light curves.
Results. We have constructed a classification system that can process huge amounts of time series in negligible time and provide reliable samples of the main variability classes. We have evaluated its strengths and weaknesses and provide potential users of the classifier with a detailed description of its characteristics to aid in the interpretation of classification results. Finally, we apply the classifiers to obtain object samples of classes not previously studied in the OGLE database and analyse the results. We pay specific attention to the B-stars in the samples, as their pulsations are strongly dependent on metallicity.
Key words: stars: variables: general / stars: binaries: general / techniques: photometric / methods: data analysis / methods: statistical
© ESO, 2009
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.