Free Access
Volume 423, Number 2, August IV 2004
Page(s) 761 - 776
Section Astronomical instrumentation
Published online 06 August 2004
  1. Abazajian, K., Adelman Mc Carthy, J. K., Agüeros, M. A., et al. 2003, AJ, 126, 2081 [Google Scholar]
  2. Arnouts, S., Cristiani, S., Moscardini, L., et al. 1999, MNRAS, 310, 540 [NASA ADS] [CrossRef] [Google Scholar]
  3. Bailer-Jones, C. A. L., Gupta, R., & Singh, H. P. 2001, An introduction to artificial neural networks Proc. of the Workshop on Automated Data Analysis in Astronomy, IUCAA, Pune, India, October 9-12, 2000 [arXiv:astro-ph/0102224] [Google Scholar]
  4. Ball, N. M., Loveday, M., Fukugita, M., et al. 2004, MNARS, 348, 1038 [Google Scholar]
  5. Battiti, R., & Tecchiolli, G. 1995, Training neural nets with the reactive tabu search, IEEE Transactions on Neural Networks, 6(5):1185-1200 [Google Scholar]
  6. Benítez, N. 2000, ApJ, 536, 571 [NASA ADS] [CrossRef] [Google Scholar]
  7. Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  8. Bertsekas, D. P. 1995, Nonlinear Programming, Belmont, MA: Athena Scientific, ISBN 1-886529-14-0 [Google Scholar]
  9. Bishop, C. M. 1995, Neural networks for pattern recognition (Oxford University Press) [Google Scholar]
  10. Calzetti, D. 1997, in The ultraviolet universe at low and high redshift: Probing the progress of Galaxy evolution, ed. W. H. Waller et al., AIP Conf. Proc. 408 (Woodbury: AIP), 403 [Google Scholar]
  11. Cohen, J. G., Hogg, D. W., Blandford, R., et al. 2000, ApJ, 538, 29 [NASA ADS] [CrossRef] [Google Scholar]
  12. Coleman, G. D., Wu, C.-C., & Weedman, D. W. 1980, ApJS, 43, 393 [NASA ADS] [CrossRef] [Google Scholar]
  13. Connolly, A. J., Csabai, I., Szalay, A. S., et al. 1995, AJ, 110, 2655 [NASA ADS] [CrossRef] [Google Scholar]
  14. Cristiani, S., Appenzeller, I., Arnouts, S., et al. 2000, A&A, 359, 489 [NASA ADS] [Google Scholar]
  15. Cristiani, S., Renzini, A., & Williams, R. 2000, Deep Fields, Proc. of the ESO Workshop 9-12 Oct., ed. S. Cristiani, A. Renzini, & R. Williams (Springer Verlag) [Google Scholar]
  16. Csabai, I., Budvàri, T., Connolly, A. J., et al. 2003, AJ, 125, 580 [NASA ADS] [CrossRef] [Google Scholar]
  17. Dawson, S., Stern, D., Bunker, A. J., Spinrad, H., & Dey, A. 2001, AJ, 122, 598 [NASA ADS] [CrossRef] [Google Scholar]
  18. Fernández-Soto, A., Lanzetta, K. M., & Yahil, A. 1999, ApJ, 513, 34 [NASA ADS] [CrossRef] [Google Scholar]
  19. Fernández-Soto, A., Lanzetta, K. M., Chen, H. W., Pascarelle, S. M., & Yahata, N. 2001, ApJ, 135, 41 [Google Scholar]
  20. Fioc, M., & Rocca-Volmerange, B. 1997, A&A, 326, 950 [NASA ADS] [Google Scholar]
  21. Firth, A. E., Lahav, O., & Somerville, R. S. 2003, MNRAS, 339, 1195 [NASA ADS] [CrossRef] [Google Scholar]
  22. Fontana, A., Menci, N., D'Odorico, S., et al. 1999, MNRAS, 310, 27 [Google Scholar]
  23. Fontana, A., D'Odorico, S., Poli, F., et al. 2000, AJ, 120, 2206 [NASA ADS] [CrossRef] [Google Scholar]
  24. Fontana, A., et al. 2003, in preparation [Google Scholar]
  25. Giallongo, E., Menci, N., Poli, F., D'Odorico, S., & Fontana, A. 2000, ApJ, 530, 73 [Google Scholar]
  26. Giallongo, E., D'Odorico, S., Fontana, A., et al. 1998, AJ, 115, 2169 [NASA ADS] [CrossRef] [Google Scholar]
  27. Haykin, S. 1994, Neural Networks: A Comprehensive Foundation (NY: Macmillan) [Google Scholar]
  28. Kinney, A. L., Calzetti, D., Bohlin, R. C., et al. 1996, ApJ, 467, 38 [NASA ADS] [CrossRef] [Google Scholar]
  29. Labbe, I., Rudnick, G., Franx, M., & Daddi, E. 2003, ApJ, 591, 95 [Google Scholar]
  30. Le Borgne, D., & Rocca-Volmerange, B. 2002, A&A, 386, 446 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  31. Massarotti, M., Iovino, A., Buzzoni, A., & Valls-Gabaud, D. 2001, A&A, 380, 425 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  32. Moody, J. E. 1992, in The Effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems, ed. J. E. Moody, S. J. Hanson, & R. P. Lippmann, Advances in Neural Information Processing Systems 4, 847, 854 [Google Scholar]
  33. Rigopoulou, D., Franceschini, A., Aussel, H., et al. 2000, ApJ, 537, L85 [NASA ADS] [CrossRef] [Google Scholar]
  34. Sarle, W. S. 1994, Neural Networks and Statistical Models, Proc. of the Nineteenth Annual SAS Users Group International Conf., Cary, NC: SAS Institute, 1538 [Google Scholar]
  35. Sarle, W. S. 1994, in Neural Network Implementation in SAS Software, SAS Institute Inc., Proc. of the Nineteenth Annual SAS Users Group International Conf., Cary, NC: SAS Institute Inc., p 1551 [Google Scholar]
  36. Sarle, W. S. 1995, Stopped training and other remedies for over-fitting, Proc. of the 27th Symp. on the interface of computing science and statistics, 352 [Google Scholar]
  37. Sawicki, M. J., Lin, H., & Yee, H. K. C. 1997, AJ, 113, 1S [NASA ADS] [CrossRef] [Google Scholar]
  38. Sawicki, M. J. M., & Ornelas, G. 2003, AJ, 126, 1208 [NASA ADS] [CrossRef] [Google Scholar]
  39. Sersic, J. L. 1968, Atlas de galaxias australes, Observatorio Astronomico, Cordoba [Google Scholar]
  40. Stoughton, C., Lupton, R. H., Bernardi, M., et al. 2002, AJ, 123, 485 [NASA ADS] [CrossRef] [Google Scholar]
  41. Tagliaferri, R., Longo, G., Andreon, S., et al. 2002 [arXiv:astro-ph/0203445] [Google Scholar]
  42. Trujillo, I., Rudnick, G., Rix, H. W., et al. 2004, ApJ, 604, 521 [NASA ADS] [CrossRef] [Google Scholar]
  43. Vanzella, E., Cristiani, S., Saracco, P., et al. 2001, AJ, 122, 2190 [NASA ADS] [CrossRef] [Google Scholar]
  44. Vanzella, E., Cristiani, S., Arnouts, S., et al. 2002, A&A, 396, 847 [NASA ADS] [CrossRef] [EDP Sciences] [Google Scholar]
  45. Wang, Y., Bahcall, N., & Turner, E. L. 1998, AJ, 116, 2081 [NASA ADS] [CrossRef] [Google Scholar]
  46. York, D. G., Adelman, J., Anderson, J. E., et al. 2000, AJ, 120, 1579 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.