Issue |
A&A
Volume 523, November-December 2010
|
|
---|---|---|
Article Number | A31 | |
Number of page(s) | 21 | |
Section | Astronomical instrumentation | |
DOI | https://doi.org/10.1051/0004-6361/201014885 | |
Published online | 15 November 2010 |
PHAT: PHoto-z Accuracy Testing⋆
1
Leiden Observatory, Leiden University,
Niels Bohrweg 2,
2333CA
Leiden,
The Netherlands
e-mail: hendrik@strw.leidenuniv.nl
2
Canada-France-Hawaii Telescope Corporation,
Kamuela,
HI
96743,
USA
3
Spitzer Science Center, 314-6, California Institute of Technology,
1201 E. California
Blvd, Pasadena,
CA, 91125, USA
4
Jet Propulsion Laboratory, California Institute of Technology,
MS 169-327,
Pasadena, CA
91109,
USA
5
Department of Physics, University of Oxford,
DWB, Keble Road, Oxford, OX1
3RH, UK
6
Department of Physics and Astronomy, University College
London, Gower
Street, London
WC1E 6BT,
UK
7
Department of Astronomy, The Ohio State University,
4055 McPherson Lab, 140 W. 18th
Avenue, Columbus,
OH
43210,
USA
8
Institute of Astronomy, University of Cambridge,
Madingley Road,
Cambridge, CB3 0HA, UK
9
Instituto de Astrofísica de Andalucía (CSIC),
Apdo. 3044,
18008
Granada,
Spain
10
Department of Astronomy, Yale University,
New Haven, CT
06520-8101,
USA
11
Department of Physics and Astronomy, Johns Hopkins
University, 3400 North Charles
Street, Baltimore,
MD
21218,
USA
12
Department of Computer Science, Johns Hopkins
University, 3400 North Charles
Street, Baltimore,
MD
21218,
USA
13
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD
21218,
USA
14
Department of Physics, Institute of Astronomy,
ETH Zürich, Wolfgang-Pauli-Strasse
16, 8093
Zürich,
Switzerland
15
Department of Physics, University of Michigan,
Ann Arbor, Michigan
48109,
USA
16
Department of Physics and Astronomy, University of Waterloo, 200
University Avenue West, Waterloo, Ontario, N2L
3G1, Canada
17
Laboratoire d’Astrophysique de Marseille, CNRS-Université
d’Aix-Marseille, 38 rue Frédéric
Joliot-Curie, 13388
Marseille Cedex 13,
France
18
Centre for Astrophysics Research, University of Hertfordshire,
College Lane,
Hatfield
AL10 9AB,
UK
19
Department of Astronomy, University of
Wisconsin-Madison, 475 N Charter
St., Madison,
WI
53706,
USA
20
Centre for Astrophysics & Supercomputing, Swinburne
University of Technology, PO Box
218, Hawthorn,
VIC
3122,
Australia
21
Institut d’Estudis Andorrans, Avda Rocafort 21–23, AD 600
Sant Julià de Lòria,
Andorra
22
Department of Physics of Complex Systems, Eötvös Loránd
University, Pf. 32,
1518
Budapest,
Hungary
23
Physics Department, University of California,
1 Shields Avenue, Davis, CA
95616,
USA
24
Kavli Institute for Particle Astrophysics and Cosmology, SLAC
National Accelerator Laboratory, Menlo Park, CA
94025,
USA
Received:
29
April
2010
Accepted:
23
July
2010
Context. Photometric redshifts (photo-z’s) have become an essential tool in extragalactic astronomy. Many current and upcoming observing programmes require great accuracy of photo-z’s to reach their scientific goals.
Aims. Here we introduce PHAT, the PHoto-z Accuracy Testing programme, an international initiative to test and compare different methods of photo-z estimation.
Methods. Two different test environments are set up, one (PHAT0) based on simulations to test the basic functionality of the different photo-z codes, and another one (PHAT1) based on data from the GOODS survey including 18-band photometry and ~2000 spectroscopic redshifts.
Results. The accuracy of the different methods is expressed and ranked by the global photo-z bias, scatter, and outlier rates. While most methods agree very well on PHAT0 there are differences in the handling of the Lyman-α forest for higher redshifts. Furthermore, different methods produce photo-z scatters that can differ by up to a factor of two even in this idealised case. A larger spread in accuracy is found for PHAT1. Few methods benefit from the addition of mid-IR photometry. The accuracy of the other methods is unaffected or suffers when IRAC data are included. Remaining biases and systematic effects can be explained by shortcomings in the different template sets (especially in the mid-IR) and the use of priors on the one hand and an insufficient training set on the other hand. Some strategies to overcome these problems are identified by comparing the methods in detail. Scatters of 4–8% in Δz / (1 + z) were obtained, consistent with other studies. However, somewhat larger outlier rates (>7.5% with Δz / (1 + z) > 0.15; > 4.5% after cleaning) are found for all codes that can only partly be explained by AGN or issues in the photometry or the spec-z catalogue. Some outliers were probably missed in comparisons of photo-z’s to other, less complete spectroscopic surveys in the past. There is a general trend that empirical codes produce smaller biases than template-based codes.
Conclusions. The systematic, quantitative comparison of different photo-z codes presented here is a snapshot of the current state-of-the-art of photo-z estimation and sets a standard for the assessment of photo-z accuracy in the future. The rather large outlier rates reported here for PHAT1 on real data should be investigated further since they are most probably also present (and possibly hidden) in many other studies. The test data sets are publicly available and can be used to compare new, upcoming methods to established ones and help in guiding future photo-z method development.
Key words: techniques: photometric / galaxies: distances and redshifts / galaxies: photometry / cosmology: observations / methods: data analysis
© ESO, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.