Open Access

Table A.1.

Properties of the different samples of the analysis.

data set lens catalogue source catalogue covariance mask fraction model prior
selection size position redshift shape noise selection density redshift
LSS + shape nosie (4) z d < 1 log M sim 13.7 $ \begin{array}{r} z_{\mathrm{d}} < 1\\ \log M_{\mathrm{sim}} \gtrsim 13.7\end{array} $ 6155 true true σϵ = 0.26 zs > zd + 0.1 30 arcmin−2 true stat + LSS none NFW uniform log M 200 c [ 13 , 16 ] log c 200 c [ 0 , 1 ] $ \begin{array}{r} \mathrm{uniform}\\\log M_{\mathrm{200c}} \in [13, 16]\\ \log c_{\mathrm{200c}} \in [0, 1]\end{array} $
photo-z non-conservative (5.1.1) z d < 1 log M sim 13.7 $ \begin{array}{r} z_{\mathrm{d}} < 1\\ \log M_{\mathrm{sim}} \gtrsim 13.7\end{array} $ 6155 true true σϵ = 0.26 zs > zd + 0.1 30 arcmin−2 normal μ Δ z = 0.002 σ Δ z = 0.45 12.7 % outliers $ \begin{array}{r}{\mathrm{normal}}\\ \mu_{\tilde{\Delta} z} = -0.002\\ \sigma_{\tilde{\Delta} z} = 0.45\\ 12.7\%\,\mathrm{outliers}\end{array} $ stat + LSS none NFW uniform log M 200 c [ 13 , 16 ] log c 200 c [ 0 , 1 ] $ \begin{array}{r}\mathrm{uniform}\\ \log M_{\mathrm{200c}} \in [13, 16]\\ \log c_{\mathrm{200c}} \in [0, 1]\end{array} $
photo-z robust (5.1.2) z d < 1 log M sim 13.7 $ \begin{array}{r} z_{\mathrm{d}} < 1\\ \log M_{\mathrm{sim}} \gtrsim 13.7\end{array} $ 6155 true true σϵ = 0.26 z s > z d + 2 σ Δ z + 0.1 30 % removed $ \begin{array}{r}z_{\mathrm{s}} > z_{\mathrm{d}} + 2\sigma_{\tilde{\Delta} z} + 0.1\\30\%\,\mathrm{removed}\end{array} $ 21 arcmin−2 normal μ Δ z = 0.003 σ Δ z = 0.29 $ \begin{array}{r}{\mathrm{normal}}\\\mu_{\tilde{\Delta} z} = -0.003\\ \sigma_{\tilde{\Delta} z} = 0.29\end{array} $ stat + LSS none NFW log M 200 c [ 13 , 16 ] log c 200 c [ 0 , 1 ] $ \begin{array}{r}\log M_{\mathrm{200c}} \in [13, 16]\\ \log c_{\mathrm{200c}} \in [0, 1]\end{array} $
AMICO-like (5.2) z d < 1 log M sim 13.7 AMICO detection $ \begin{array}{r} z_{\mathrm{d}} < 1 \\ \log M_{\mathrm{sim}} \gtrsim 13.7 \\ {\mathtt{AMICO}}~\mathrm{detection}\end{array} $ 4557 log normal μ = 0.22 σ = 0.19 $ \begin{array}{r} \mathrm{log-normal}\\ \mu = 0.22 \\ \sigma = 0.19\end{array} $ σ Δ z = 0.03 / M $ \sigma_{\tilde{\Delta} z} = 0.03 / \sqrt{M} $ σϵ = 0.26 zs > zd + 0.1 30 arcmin−2 true stat + LSS none NFW uniform log M 200 c [ 13 , 16 ] log c 200 c [ 0 , 1 ] $ \begin{array}{r}\mathrm{uniform}\\ \log M_{\mathrm{200c}} \in [13, 16]\\ \log c_{\mathrm{200c}} \in [0, 1]\end{array} $
PZWav-like (5.2) z d < 1 log M sim 13.7 PZWav detection $ \begin{array}{r} z_{\mathrm{d}} < 1 \\ \log M_{\mathrm{sim}} \gtrsim 13.7\\ {\mathtt{PZWav}}~\mathrm{detection}\end{array} $ 4954 log normal μ = 0.27 σ = 0.45 $ \begin{array}{r} \mathrm{log-normal}\\ \mu = 0.27 \\ \sigma = 0.45\end{array} $ σ Δ z = 0.03 / M $ \sigma_{\tilde{\Delta} z} = 0.03 / \sqrt{M} $ σϵ = 0.26 zs > zd + 0.1 30 arcmin−2 true stat + LSS none NFW uniform log M 200 c [ 13 , 16 ] log c 200 c [ 0 , 1 ] $ \begin{array}{r}\mathrm{uniform}\\ \log M_{\mathrm{200c}} \in [13, 16] \\ \log c_{\mathrm{200c}} \in [0, 1]\end{array} $
masks (5.3) z d < 1 log M sim 13.7 $ \begin{array}{r} z_{\mathrm{d}} < 1 \\ \log M_{\mathrm{sim}} \gtrsim 13.7\end{array} $ 4756 true true σϵ = 0.26 zs > zd + 0.1 23 arcmin−2 true stat + LSS 22.4% NFW uniform log M 200 c [ 13 , 16 ] log c 200 c [ 0 , 1 ] $ \begin{array}{r}\mathrm{uniform}\\ \log M_{\mathrm{200c}} \in [13, 16]\\ \log c_{\mathrm{200c}} \in [0, 1]\end{array} $
BMO + prior (6) z d < 1 log M sim 13.7 $ \begin{array}{r} z_{\mathrm{d}} < 1\\ \log M_{\mathrm{sim}} \gtrsim 13.7\end{array} $ 6155 true true σϵ = 0.26 zs > zd + 0.1 30 arcmin−2 true stat + LSS none BMO Gaussian + uniform log M 200 c [ 13 , 16 ] log c 200 c [ 0 , 1 ] $ \begin{array}{r}\mathrm{Gaussian + uniform}\\ \log M_{\mathrm{200c}} \in [13, 16]\\ \log c_{\mathrm{200c}} \in [0, 1]\end{array} $
photo- z robust + AMICO -like + masks + ( 7 ) BMO + prior $ \begin{array}{l} \text{ photo-}z \text{ robust} \,+\\ {\mathtt{AMICO}}\text{-like} \,+ \\ \text{ masks} + {\quad\quad\quad}(7)\\ \text{ BMO} + \text{ prior} \end{array} $ z d < 1 log M sim 13.7 AMICO detection $ \begin{array}{r} z_{\mathrm{d}} < 1 \\ \log M_{\mathrm{sim}} \gtrsim 13.7\\ {\mathtt{AMICO}}~\mathrm{detection}\end{array} $ 3547 log normal μ = 0.22 σ = 0.19 $ \begin{array}{r}\mathrm{log-normal}\\ \mu = 0.22\\ \sigma = 0.19\end{array} $ σ Δ z = 0.03 / M $ \sigma_{\tilde{\Delta} z} = 0.03 / \sqrt{M} $ σϵ = 0.26 z s > z d + 2 σ Δ z + 0.1 30 % removed $ \begin{array}{r} z_{\mathrm{s}} > z_{\mathrm{d}} + 2\sigma_{\tilde{\Delta} z} + 0.1\\ 30\%~\mathrm{removed}\end{array} $ 16 arcmin−2 normal μ Δ z = 0.003 σ Δ z = 0.29 $ \begin{array}{r}{\mathrm{normal}}\\\mu_{\tilde{\Delta} z} = -0.003\\ \sigma_{\tilde{\Delta} z} = 0.29\end{array} $ stat + LSS 22.4% BMO Gaussian + uniform log M 200 c [ 13 , 16 ] log c 200 c [ 0 , 1 ] $ \begin{array}{r}\mathrm{{Gaussian} + \rm{uniform}}\\ \log M_{\mathrm{200c}} \in [13, 16]\\ \log c_{\mathrm{200c}} \in [0, 1]\end{array} $

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.