Issue |
A&A
Volume 700, August 2025
|
|
---|---|---|
Article Number | A5 | |
Number of page(s) | 26 | |
Section | Planets, planetary systems, and small bodies | |
DOI | https://doi.org/10.1051/0004-6361/202452560 | |
Published online | 28 July 2025 |
The KELT-7b atmospheric thermal-inversion conundrum revisited with CHEOPS, TESS, and additional data★
1
HUN-REN-ELTE Exoplanet Research Group,
Szent Imre h. u. 112,
9700
Szombathely,
Hungary
2
ELTE Gothard Astrophysical Observatory,
Szent Imre h. u. 112,
9700
Szombathely,
Hungary
3
Astronomical Institute, Slovak Academy of Sciences,
05960
Tatranská Lomnica,
Slovakia
4
Space Research Institute, Austrian Academy of Sciences,
Schmiedlstrasse 6,
8042
Graz,
Austria
5
INAF, Osservatorio Astrofisico di Torino,
Via Osservatorio, 20,
10025
Pino Torinese To,
Italy
6
INAF, Osservatorio Astrofisico di Catania,
Via S. Sofia 78,
95123
Catania,
Italy
7
Institute of Planetary Research, German Aerospace Center (DLR),
Rutherfordstrasse 2,
12489
Berlin,
Germany
8
Department of Physics, University of Warwick,
Gibbet Hill Road,
Coventry
CV4 7AL,
UK
9
Department of Astronomy, Stockholm University, AlbaNova University Center,
10691
Stockholm,
Sweden
10
European Space Agency (ESA), European Space Research and Technology Centre (ESTEC),
Keplerlaan 1,
2201
AZ
Noordwijk,
The Netherlands
11
Observatoire astronomique de l’Université de Genève,
Chemin Pegasi 51,
1290
Versoix,
Switzerland
12
Instituto de Astrofisica e Ciencias do Espaco, Universidade do Porto, CAUP, Rua das Estrelas,
4150-762
Porto,
Portugal
13
Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre,
4169-007
Porto,
Portugal
14
Center for Space and Habitability, University of Bern,
Gesellschaftsstrasse 6,
3012
Bern,
Switzerland
15
Space Research and Planetary Sciences, Physics Institute, University of Bern,
Gesellschaftsstrasse 6,
3012
Bern,
Switzerland
16
Instituto de Astrofísica de Canarias, Vía Láctea s/n,
38200
La Laguna, Tenerife,
Spain
17
Departamento de Astrofísica, Universidad de La Laguna, Astrofísico Francisco Sanchez s/n,
38206
La Laguna, Tenerife,
Spain
18
Admatis,
5. Kandó Kálmán Street,
3534
Miskolc,
Hungary
19
Depto. de Astrofísica, Centro de Astrobiología (CSIC-INTA), ESAC campus,
28692
Villanueva de la Cañada (Madrid),
Spain
20
INAF, Osservatorio Astronomico di Padova,
Vicolo dell’Osservatorio 5,
35122
Padova,
Italy
21
Centre for Exoplanet Science, SUPA School of Physics and Astronomy, University of St Andrews,
North Haugh,
St Andrews
KY16 9SS,
UK
22
CFisUC, Departamento de Física, Universidade de Coimbra,
3004-516
Coimbra,
Portugal
23
Centre for Mathematical Sciences, Lund University,
Box 118,
221 00
Lund,
Sweden
24
Aix Marseille Univ, CNRS, CNES, LAM,
38 rue Frédéric Joliot-Curie,
13388
Marseille,
France
25
SRON Netherlands Institute for Space Research,
Niels Bohrweg 4,
2333
CA
Leiden,
The Netherlands
26
Centre Vie dans l’Univers, Faculté des sciences, Université de Genève,
Quai Ernest-Ansermet 30,
1211
Genève 4,
Switzerland
27
Leiden Observatory, University of Leiden,
PO Box 9513,
2300
RA
Leiden,
The Netherlands
28
Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory,
439 92
Onsala,
Sweden
29
Dipartimento di Fisica, Università degli Studi di Torino,
via Pietro Giuria 1,
10125
Torino,
Italy
30
National and Kapodistrian University of Athens, Department of Physics, University Campus, Zografos
157 84,
Athens,
Greece
31
Astrobiology Research Unit, Université de Liège,
Allée du 6 Août 19C,
4000
Liège,
Belgium
32
Department of Astrophysics, University of Vienna,
Türkenschanzstrasse 17,
1180
Vienna,
Austria
33
Institute for Theoretical Physics and Computational Physics, Graz University of Technology,
Petersgasse 16,
8010
Graz,
Austria
34
Konkoly Observatory, Research Centre for Astronomy and Earth Sciences,
1121
Budapest,
Konkoly Thege Miklós út 15–17,
Hungary
35
ELTE Eötvös Loránd University, Institute of Physics,
Pázmány Péter sétány 1/A,
1117
Budapest,
Hungary
36
Lund Observatory, Division of Astrophysics, Department of Physics, Lund University,
Box 118,
22100
Lund,
Sweden
37
IMCCE, UMR8028 CNRS, Observatoire de Paris, PSL Univ., Sorbonne Univ.,
77 av. Denfert-Rochereau,
75014
Paris,
France
38
Institut d’astrophysique de Paris, UMR7095 CNRS, Université Pierre & Marie Curie,
98bis blvd. Arago,
75014
Paris,
France
39
Astrophysics Group, Lennard Jones Building, Keele University,
Staffordshire
ST5 5BG,
UK
40
European Space Agency, ESA – European Space Astronomy Centre, Camino Bajo del Castillo s/n,
28692
Villanueva de la Cañada, Madrid,
Spain
41
Institute of Optical Sensor Systems, German Aerospace Center (DLR),
Rutherfordstrasse 2,
12489
Berlin,
Germany
42
Weltraumforschung und Planetologie, Physikalisches Institut, University of Bern,
Gesellschaftsstrasse 6,
3012
Bern,
Switzerland
43
Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università degli Studi di Padova,
Vicolo dell’Osservatorio 3,
35122
Padova,
Italy
44
ETH Zurich, Department of Physics,
Wolfgang-Pauli-Strasse 2,
8093
Zurich,
Switzerland
45
Cavendish Laboratory,
JJ Thomson Avenue,
Cambridge
CB3 0HE,
UK
46
Institut fuer Geologische Wissenschaften, Freie Universitaet Berlin,
Maltheserstrasse 74-100,
12249
Berlin,
Germany
47
Institut de Ciencies de l’Espai (ICE, CSIC), Campus UAB, Can Magrans s/n,
08193
Bellaterra,
Spain
48
Institut d’Estudis Espacials de Catalunya (IEEC),
08860
Castelldefels (Barcelona),
Spain
49
Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège,
Allée du 6 Août 19C,
4000
Liège,
Belgium
50
Institute of Astronomy, University of Cambridge,
Madingley Road,
Cambridge
CB3 0HA,
UK
51
HUN-REN-SZTE Stellar Astrophysics Research Group,
6500,
Baja,
Szegedi út, Kt. 766,
Hungary
★★ Corresponding author: zgarai@ta3.sk; zgarai@gothard.hu
Received:
10
October
2024
Accepted:
21
May
2025
Context. Early theoretical works suggested that ultrahot Jupiters have inverted temperature-pressure (T–P) profiles in the presence of optical absorbers, such as TiO and VO. Recently, an inverted T–P profile of KELT-7b was detected, in agreement with the predictions. However, the diagnosis of T–P inversions has always been recognized to be a model-dependent process.
Aims. We used the Characterising Exoplanet Satellite (CHEOPS), the Transiting Exoplanet Survey Satellite (TESS), and additional literature data to characterize the atmosphere of KELT-7b, rederive the T–P profile, provide a precise measurement of the albedo of KELT-7b, and search for a possible distortion in the precise CHEOPS transit light curve of the planet.
Methods. We first jointly fitted the CHEOPS and TESS data and measured the occultation depths in these passbands. The CHEOPS transits were also fitted with a model including the gravity-darkening effect. Emission and absorption retrievals were performed to characterize the atmosphere of KELT-7b. The albedo of the planet was calculated in the CHEOPS and TESS passbands.
Results. When adopting a thermochemical-equilibrium atmospheric composition, the emission retrievals return a non-inverted T–P profile, in contrast with previous results. When adopting a free-chemistry atmospheric parameterization, the emission retrievals return an inverted T-P profile with – likely unphysically – high concentrations of TiO and VO. The 3D general circulation model (GCM) supports a TiO-induced temperature inversion. We report for KELT-7b a very low geometric albedo of Ag = 0.05 ± 0.06, which is consistent with the heat distribution ϵ being close to zero and also consistent with a 3D GCM simulation, using magnetic drag (τdrag = 104 s). Based on the CHEOPS photometry, we are unable to place any meaningful constraint on the sky-projected orbital obliquity.
Conclusions. The choice of a free-chemistry approach or a thermochemical-equilibrium chemistry is the main factor determining the retrieval results. Free-chemistry retrievals generally yield better fits; however, assuming free chemistry risks adopting unphysical scenarios for ultrahot Jupiters, such as KELT-7b. We applied a coherent stellar variability treatment on TESS and CHEOPS observations, commensurate with the known stellar activity of the host star. Other observations of KELT-7b would also benefit from a coherent stellar variability treatment.
Key words: methods: observational / techniques: photometric / planets and satellites: atmospheres / planets and satellites: fundamental parameters / planets and satellites: individual
© The Authors 2025
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.