Issue |
A&A
Volume 681, January 2024
|
|
---|---|---|
Article Number | L7 | |
Number of page(s) | 11 | |
Section | Letters to the Editor | |
DOI | https://doi.org/10.1051/0004-6361/202348266 | |
Published online | 25 December 2023 |
Letter to the Editor
The Galaxy Activity, Torus, and Outflow Survey (GATOS)
III. Revealing the inner icy structure in local active galactic nuclei
1
Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH, UK
e-mail: igbernete@gmail.com
2
Centro de Astrobiología (CAB), CSIC-INTA, Camino Bajo del Castillo s/n, 28692 Villanueva de la Cañada, Madrid, Spain
3
School of Sciences, European University Cyprus, Diogenes street, Engomi, 1516 Nicosia, Cyprus
4
Instituto de Física Fundamental, CSIC, Calle Serrano 123, 28006 Madrid, Spain
5
Max-Planck-Institut fur extraterrestrische Physik, Postfach 1312, 85741 Garching, Germany
6
Instituto de Radioastronomía and Astrofísica (IRyA-UNAM), 3-72 (Xangari), 8701 Morelia, Mexico
7
Instituto de Astrofísica de Canarias, Calle Vía Láctea, s/n, 38205 La Laguna, Tenerife, Spain
8
Departamento de Astrofísica, Universidad de La Laguna, 38206 La Laguna, Tenerife, Spain
9
Departamento de Física de la Tierra y Astrofísica, Fac. de CC Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
10
Instituto de Física de Partículas y del Cosmos IPARCOS, Fac. de CC Físicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
11
Cahill Center for Astrophysics, California Institute of Technology, 1216 East California Boulevard, Pasadena, CA 91125, USA
12
Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, 92190 Meudon, France
13
Observatorio Astronómico Nacional (OAN-IGN)-Observatorio de Madrid, Alfonso XII, 3, 28014 Madrid, Spain
14
Universidad de Alcalá, Departamento de Física y Matemáticas, Campus Universitario, 28871 Alcalá de Henares, Madrid, Spain
15
Department of Physics & Astronomy, University of Alaska Anchorage, AK 99508-4664, USA
16
Department of Physics & Astronomy, University of Southampton, Hampshire, SO17 1BJ Southampton, UK
17
Telespazio UK for the European Space Agency (ESA), ESAC, Camino Bajo del Castillo s/n, 28692 Villanueva de la Cañada, Spain
18
Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
19
Kavli Institute for Particle Astrophysics and Cosmology (KIPAC), Stanford University, Stanford, CA 94305, USA
20
Instituto de Estudios Astrofísicos, Facultad de Ingeniería y Ciencias, Universidad Diego Portales, Avenida Ejercito Libertador 441, Santiago, Chile
21
The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
22
Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia
23
Centre for Extragalactic Astronomy, Durham University, South Road, Durham DH1 3LE, UK
Received:
13
October
2023
Accepted:
1
December
2023
We use JWST/MIRI MRS spectroscopy of a sample of six local obscured type 1.9/2 active galactic nuclei (AGN) to compare their nuclear mid-IR absorption bands with the level of nuclear obscuration traced by X-rays. This study is the first to use subarcsecond angular resolution data of local obscured AGN to investigate the nuclear mid-IR absorption bands with a wide wavelength coverage (4.9–28.1 μm). All the nuclei show the 9.7 μm silicate band in absorption. We compare the strength of the 9.7 and 18 μm silicate features with torus model predictions. The observed silicate features are generally well explained by clumpy and smooth torus models. We report the detection of the 6 μm dirty water ice band (i.e., a mix of water and other molecules such as CO and CO2) at subarcsecond scales (∼0.26″ at 6 μm; inner ∼50 pc) in a sample of local AGN with different levels of nuclear obscuration in the range log NHX-Ray (cm−2)∼22 − 25. We find good correlation between the 6 μm water ice optical depths and NHX-Ray. This result indicates that the water ice absorption might be a reliable tracer of the nuclear intrinsic obscuration in AGN. The weak water ice absorption in less obscured AGN (log NHX-ray (cm−2)≲23.0 cm−2) might be related to the hotter dust temperature (> TsubH2O ∼ 110 K) expected to be reached in the outer layers of the torus due to their more inhomogeneous medium. Our results suggest it might be necessary to include the molecular content, such as H2O, aliphatic hydrocarbons (CH−), and more complex polycyclic aromatic hydrocarbon (PAH) molecules, in torus models to better constrain key parameters such as the torus covering factor (i.e., nuclear obscuration).
Key words: techniques: high angular resolution / techniques: spectroscopic / galaxies: nuclei / galaxies: Seyfert / infrared: galaxies
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.