Issue |
A&A
Volume 674, June 2023
|
|
---|---|---|
Article Number | A43 | |
Number of page(s) | 15 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/202245478 | |
Published online | 08 June 2023 |
TOI-5678b: A 48-day transiting Neptune-mass planet characterized with CHEOPS and HARPS★,★★
1
Observatoire Astronomique de l’Université de Genève,
Chemin Pegasi 51,
1290
Versoix, Switzerland
e-mail: solene.ulmer-moll@astro.up.pt
2
Physikalisches Institut, University of Bern,
Gesellschaftsstrasse 6,
3012
Bern, Switzerland
3
Department of Physics and Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology,
Cambridge, MA
02139, USA
4
Astrophysics Group, Cavendish Laboratory, University of Cambridge,
J.J. Thomson Avenue,
Cambridge
CB3 0HE, UK
5
Astrophysics Group, Keele University,
Staffordshire
ST5 5BG, UK
6
Department of Astronomy, Stockholm University, AlbaNova University Center,
10691
Stockholm, Sweden
7
Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP,
Rua das Estrelas,
4150-762
Porto, Portugal
8
Space Research Institute, Austrian Academy of Sciences,
Schmiedlstrasse 6,
8042
Graz, Austria
9
Leiden Observatory, University of Leiden,
PO Box 9513,
2300 RA
Leiden, The Netherlands
10
Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory,
439 92
Onsala, Sweden
11
Dipartimento di Fisica, Universita degli Studi di Torino,
via Pietro Giuria 1,
10125
Torino, Italy
12
Centre for Exoplanet Science, SUPA School of Physics and Astronomy, University of St Andrews,
North Haugh,
St Andrews
KY16 9SS, UK
13
ESTEC, European Space Agency,
2201 AZ
Noordwijk, The Netherlands
14
INAF - Osservatorio Astrofisico di Catania,
Via S. Sofia 78,
95123
Catania, Italy
15
German Aerospace Center (DLR), Institute of Optical Sensor Systems,
Rutherfordstraße 2,
12489
Berlin, Germany
16
Instituto de Astrofisica de Canarias,
38200
La Laguna, Tenerife, Spain
17
Departamento de Astrofisica, Universidad de La Laguna,
38206
La Laguna, Tenerife, Spain
18
Institut de Ciencies de l’Espai (ICE, CSIC),
Campus UAB, Can Magrans s/n,
08193
Bellaterra, Spain
19
Institut d’Estudis Espacials de Catalunya (IEEC),
08034
Barcelona, Spain
20
Depto. de Astrofisica, Centro de Astrobiologia (CSIC-INTA),
ESAC campus,
28692
Villanueva de la Cañada (Madrid), Spain
21
Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto,
Rua do Campo Alegre,
4169-007
Porto, Portugal
22
Center for Space and Habitability, University of Bern,
Gesellschaftsstrasse 6,
3012
Bern, Switzerland
23
Université Grenoble Alpes, CNRS, IPAG,
38000
Grenoble, France
24
INAF, Osservatorio Astronomico di Padova,
Vicolo dell’Osservatorio 5,
35122
Padova, Italy
25
Admatis,
5. Kandó Kálmán Street,
3534
Miskolc, Hungary
26
Institute of Planetary Research, German Aerospace Center (DLR),
Rutherfordstrasse 2,
12489
Berlin, Germany
27
Université de Paris, Institut de physique du globe de Paris, CNRS,
75005
Paris, France
28
INAF – Osservatorio Astrofisico di Torino,
Strada Osservatorio, 20,
10025
Pino Torinese (TO), Italy
29
Centre for Mathematical Sciences, Lund University,
Box 118,
221 00
Lund, Sweden
30
Aix-Marseille Univ, CNRS, CNES, LAM,
38 rue Frédéric Joliot-Curie,
13388
Marseille, France
31
Astrobiology Research Unit, Université de Liège,
Allée du 6 Août 19C,
4000
Liège, Belgium
32
Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège,
Allée du 6 Août 19C,
4000
Liège, Belgium
33
Centre Vie dans l’Univers, Faculté des sciences, Université de Genève,
Quai Ernest-Ansermet 30,
1211
Genève 4, Switzerland
34
Center for Computational Astrophysics, Flatiron Institute,
New York, NY
10010, USA
35
University of Vienna, Department of Astrophysics,
Türkenschanzstrasse 17,
1180
Vienna, Austria
36
Institute for Computational Science, University of Zurich,
Winterthurerstr. 190,
8057
Zurich, Switzerland
37
Science and Operations Department - Science Division (SCI-SC), Directorate of Science, European Space Agency (ESA), European Space Research and Technology Centre (ESTEC),
Keplerlaan 1,
2201 AZ
Noordwijk, The Netherlands
38
Konkoly Observatory, Research Centre for Astronomy and Earth Sciences,
1121
Budapest,
Konkoly Thege Miklós út 15-17,
Hungary
39
ELTE Eötvös Loránd University, Institute of Physics,
Pázmány Péter sétány 1/A,
1117
Budapest, Hungary
40
IMCCE, UMR8028 CNRS, Observatoire de Paris, PSL Univ., Sorbonne Univ.,
77 av. Denfert-Rochereau,
75014
Paris, France
41
Institut d’astrophysique de Paris, UMR7095 CNRS, Université Pierre & Marie Curie,
98bis blvd. Arago,
75014
Paris, France
42
Department of Astrophysics, University of Vienna,
Tuerkenschanzstrasse 17,
1180
Vienna, Austria
43
Institute of Optical Sensor Systems, German Aerospace Center (DLR),
Rutherfordstrasse 2,
12489
Berlin, Germany
44
Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università degli Studi di Padova,
Vicolo dell’Osservatorio 3,
35122
Padova, Italy
45
Department of Physics, University of Warwick,
Gibbet Hill Road,
Coventry
CV4 7AL, UK
46
ETH Zurich, Department of Physics,
Wolfgang-Pauli-Strasse 2,
8093
Zurich, Switzerland
47
Cavendish Laboratory,
JJ Thomson Avenue,
Cambridge
CB3 0HE, UK
48
Zentrum für Astronomie und Astrophysik, Technische Universität Berlin,
Hardenbergstr. 36,
10623
Berlin, Germany
49
ELTE Eötvös Loránd University, Gothard Astrophysical Observatory,
9700
Szombathely,
Szent Imre h. u. 112, Hungary
50
MTA-ELTE Exoplanet Research Group,
9700
Szombathely,
Szent Imre h. u. 112, Hungary
51
Institute of Astronomy, University of Cambridge,
Madingley Road,
Cambridge
CB3 0HA, UK
Received:
16
November
2022
Accepted:
10
April
2023
Context. A large sample of long-period giant planets has been discovered thanks to long-term radial velocity surveys, but only a few dozen of these planets have a precise radius measurement. Transiting gas giants are crucial targets for the study of atmospheric composition across a wide range of equilibrium temperatures and, more importantly, for shedding light on the formation and evolution of planetary systems. Indeed, compared to hot Jupiters, the atmospheric properties and orbital parameters of cooler gas giants are unaltered by intense stellar irradiation and tidal effects.
Aims. We aim to identify long-period planets in the Transiting Exoplanet Survey Satellite (TESS) data as single or duo-transit events. Our goal is to solve the orbital periods of TESS duo-transit candidates with the use of additional space-based photometric observations and to collect follow-up spectroscopic observations in order to confirm the planetary nature and measure the mass of the candidates.
Methods. We use the CHaracterising ExOPlanet Satellite (CHEOPS) to observe the highest-probability period aliases in order to discard or confirm a transit event at a given period. Once a period is confirmed, we jointly model the TESS and CHEOPS light curves along with the radial velocity datasets to measure the orbital parameters of the system and obtain precise mass and radius measurements.
Results. We report the discovery of a long-period transiting Neptune-mass planet orbiting the G7-type star TOI-5678. Our spectroscopic analysis shows that TOI-5678 is a star with a solar metallicity. The TESS light curve of TOI-5678 presents two transit events separated by almost two years. In addition, CHEOPS observed the target as part of its Guaranteed Time Observation program. After four non-detections corresponding to possible periods, CHEOPS detected a transit event matching a unique period alias. Follow-up radial velocity observations were carried out with the ground-based high-resolution spectrographs CORALIE and HARPS. Joint modeling reveals that TOI-5678 hosts a 47.73 day period planet, and we measure an orbital eccentricity consistent with zero at 2σ. The planet TOI-5678 b has a mass of 20 ± 4 Earth masses (M⊕) and a radius of 4.91 ± 0.08 R⊕ Using interior structure modeling, we find that TOI-5678 b is composed of a low-mass core surrounded by a large H/He layer with a mass of 3.2±1.7−1.3 M⊕.
Conclusions. TOI-5678 b is part of a growing sample of well-characterized transiting gas giants receiving moderate amounts of stellar insolation (11 S⊕). Precise density measurement gives us insight into their interior composition, and the objects orbiting bright stars are suitable targets to study the atmospheric composition of cooler gas giants.
Key words: planets and satellites: detection / planets and satellites: individual: TOI-5678 / planets and satellites: gaseous planets / methods: data analysis
Full Table 2 and reduced CHEOPS and HARPS data are only available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/674/A43
© The Authors 2023
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.