Issue |
A&A
Volume 668, December 2022
|
|
---|---|---|
Article Number | A93 | |
Number of page(s) | 23 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/202244117 | |
Published online | 12 December 2022 |
CHEOPS finds KELT-1b darker than expected in visible light
Discrepancy between the CHEOPS and TESS eclipse depths
1
Instituto de Astrofísica de Canarias (IAC),
38200
La Laguna, Tenerife, Spain
e-mail: hannu@iac.es
2
Departamento de Astrofísica, Universidad de La Laguna (ULL),
38206
La Laguna, Tenerife, Spain
3
Centre for Exoplanet Science, SUPA School of Physics and Astronomy, University of St Andrews,
North Haugh, St Andrews
KY16 9SS, UK
4
Observatoire Astronomique de l’Université de Genève,
Chemin Pegasi 51,
1290
Versoix, Switzerland
5
Center for Space and Habitability, University of Bern,
Gesellschaftsstrasse 6,
3012
Bern, Switzerland
6
Dipartimento di Fisica, Università degli Studi di Torino,
via Pietro Giuria 1,
10125,
Torino, Italy
7
Physikalisches Institut, University of Bern,
Sidlerstrasse 5,
3012
Bern, Switzerland
8
Aix-Marseille Univ., CNRS, CNES, LAM,
38 rue Frédéric Joliot-Curie,
13388
Marseille, France
9
Division Technique INSU,
CS20330,
83507
La Seyne-sur-Mer Cedex, France
10
Department of Physics, University of Warwick,
Gibbet Hill Road,
Coventry
CV4 7AL, UK
11
Instituto de Astrofísica e Ciencias do Espaco, Universidade do Porto, CAUP,
Rua das Estrelas,
4150-762
Porto, Portugal
12
Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto,
Rua do Campo Alegre,
4169-007
Porto, Portugal
13
Space Research Institute, Austrian Academy of Sciences,
Schmiedlstrasse 6,
8042
Graz, Austria
14
INAF, Osservatorio Astrofísico di Catania,
Via S. Sofia 78,
95123
Catania, Italy
15
Institut de Ciencies de l’Espai (ICE, CSIC), Campus UAB,
Can Magrans s/n,
08193
Bellaterra, Spain
16
Institut d’Estudis Espacials de Catalunya (IEEC),
08034
Barcelona, Spain
17
Admatis,
5. Kandó Kálmán Street,
3534
Miskolc, Hungary
18
Depto. de Astrofísica, Centro de Astrobiologia (CSIC-INTA),
ESAC campus,
28692
Villanueva de la Cañada, Madrid, Spain
19
Université Grenoble Alpes, CNRS, IPAG,
38000
Grenoble, France
20
Department of Astronomy, Stockholm University, AlbaNova University Center,
10691
Stockholm, Sweden
21
Institute of Planetary Research, German Aerospace Center (DLR),
Rutherfordstrasse 2,
12489
Berlin, Germany
22
Université de Paris, Institut de physique du globe de Paris, CNRS,
75005
Paris, France
23
Science and Operations Department – Science Division (SCI-SC), Directorate of Science, European Space Agency (ESA), European Space Research and Technology Centre (ESTEC),
Keplerlaan 1,
2201-AZ
Noordwijk, The Netherlands
24
Centre for Mathematical Sciences, Lund University,
Box 118,
221 00
Lund, Sweden
25
Astrobiology Research Unit, Université de Liège,
Allée du 6 Août 19C,
4000
Liège, Belgium
26
Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège,
Allée du 6 Août 19C,
4000
Liège, Belgium
27
INAF, Osservatorio Astronomico di Padova,
Vicolo dell’Osservatorio 5,
35122
Padova, Italy
28
Leiden Observatory, University of Leiden,
PO Box 9513,
2300 RA
Leiden, The Netherlands
29
Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory,
439 92
Onsala, Sweden
30
University of Vienna, Department of Astrophysics,
Türkenschanzstrasse 17,
1180
Vienna, Austria
31
Konkoly Observatory, Research Centre for Astronomy and Earth Sciences,
1121
Budapest,
Konkoly Thege Miklós út 15-17,
Hungary
32
ELTE Eötvös Loránd University, Institute of Physics,
Pázmány Péter sétány 1/A,
1117,
Hungary
33
Institute of Optical Sensor Systems, German Aerospace Center (DLR),
Rutherfordstrasse 2,
12489
Berlin, Germany
34
IMCCE, UMR8028 CNRS, Observatoire de Paris, PSL Univ., Sorbonne Univ.,
77 av. Denfert-Rochereau,
75014
Paris, France
35
Institut d’astrophysique de Paris, UMR7095, CNRS, Sorbonne Université,
98bis blvd. Arago,
75014
Paris, France
36
Astrophysics Group, Keele University,
Staffordshire
ST5 5BG, UK
37
Department of Astrophysics, University of Vienna,
Tuerkenschanzstrasse 17,
1180
Vienna, Austria
38
Dipartimento di Fisica e Astronomia “Galileo Galilei”, Universita degli Studi di Padova,
Vicolo dell’Osservatorio 3,
35122
Padova, Italy
39
ETH Zurich, Department of Physics,
Wolfgang-Pauli-Strasse 2,
8093
Zurich, Switzerland
40
Cavendish Laboratory,
JJ Thomson Avenue,
Cambridge
CB3 0HE, UK
41
ESTEC, European Space Agency,
2201AZ,
Noordwijk, The Netherlands
42
Zentrum für Astronomie und Astrophysik, Technische Universität Berlin,
Hardenbergstr. 36,
10623
Berlin, Germany
43
Institut für Geologische Wissenschaften, Freie Universität Berlin,
12249
Berlin, Germany
44
ELTE Eötvös Loránd University, Gothard Astrophysical Observatory,
9700
Szombathely,
Szent Imre h. u. 112, Hungary
45
MTA-ELTE Exoplanet Research Group,
9700
Szombathely,
Szent Imre h. u. 112, Hungary
46
Institute of Astronomy, University of Cambridge,
Madingley Road,
Cambridge
CB3 0HA, UK
Received:
25
May
2022
Accepted:
6
September
2022
Recent studies based on photometry from the Transiting Exoplanet Survey Satellite (TESS) have suggested that the dayside of KELT-1b, a strongly irradiated brown dwarf, is significantly brighter in visible light than what would be expected based on Spitzer observations in the infrared. We observed eight eclipses of KELT-1b with CHaracterising ExOPlanet Satellite (CHEOPS) to measure its dayside brightness temperature in the bluest passband observed so far, and we jointly modelled the CHEOPS photometry with the existing optical and near-infrared photometry from TESS, LBT, CFHT, and Spitzer. Our modelling has led to a self-consistent dayside spectrum for KELT-1b covering the CHEOPS, TESS, H, Ks, and Spitzer IRAC 3.6 and 4.5 µm bands, where our TESS, H, Ks, and Spitzer band estimates largely agree with the previous studies. However, we discovered a strong discrepancy between the CHEOPS and TESS bands. The CHEOPS observations yield a higher photometric precision than the TESS observations, but they do not show a significant eclipse signal, while a deep eclipse is detected in the TESS band. The derived TESS geometric albedo of 0.36−0.13+0.12 is difficult to reconcile with a CHEOPS geometric albedo that is consistent with zero because the two passbands have considerable overlap. Variability in cloud cover caused by the transport of transient nightside clouds to the dayside could provide an explanation for reconciling the TESS and CHEOPS geometric albedos, but this hypothesis needs to be tested by future observations.
Key words: stars: individual: KELT-1 / brown dwarfs / planetary systems / stars: atmospheres / methods: observational
© H. Parviainen et al. 2022
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
This article is published in open access under the Subscribe-to-Open model. Subscribe to A&A to support open access publication.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.