Issue |
A&A
Volume 658, February 2022
|
|
---|---|---|
Article Number | L12 | |
Number of page(s) | 5 | |
Section | Letters to the Editor | |
DOI | https://doi.org/10.1051/0004-6361/202243030 | |
Published online | 23 February 2022 |
Letter to the Editor
Weak line discovered by Voyager 1 in the interstellar medium: Quasi-thermal noise produced by very few fast electrons
LESIA, Observatoire de Paris, PSL Université, CNRS, Sorbonne Université, Université de Paris, 92195 Meudon, France
e-mail: nicole.meyer@obspm.fr, alain.lecacheux@obspm.fr, karine.issautier@obspm.fr
Received:
3
January
2022
Accepted:
8
February
2022
A weak continuous line has been recently discovered onboard Voyager 1 in the interstellar medium, whose origin raised two major questions. First, how can this line be produced by plasma quasi-thermal noise on the Voyager short antenna? Second, why does this line emerge at some distance from the heliopause? We provide a simple answer to these questions, which elucidates the origin of this line. First, a minute quantity of supra-thermal electrons, as generally present in plasmas – whence the qualifier ‘quasi-thermal’ – can produce a small plasma frequency peak on a short antenna, of amplitude independent of the concentration of these electrons; furthermore, the detection required long spectral averages, alleviating the smallness of the peak compared to the background. We therefore attribute the observed line to a minute proportion of fast electrons that contribute negligibly to the pressure. Second, we suggest that, up to some distance from the heliopause, the large compressive fluctuations ubiquitous in this region prevent the line to emerge from the statistical fluctuations of the receiver noise because it is blurred out by the averaging required for detection, especially in the presence of short-wavelength density fluctuations. These results open up novel perspectives for interstellar missions, by showing that a minute proportion of fast electrons may be sufficient to measure the density even with a relatively short antenna, because the quietness of the medium enables a large number of spectra to be averaged.
Key words: plasmas / methods: observational / ISM: general / radio continuum: ISM
© N. Meyer-Vernet et al. 2022
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.