Issue |
A&A
Volume 653, September 2021
|
|
---|---|---|
Article Number | A173 | |
Number of page(s) | 15 | |
Section | Planets and planetary systems | |
DOI | https://doi.org/10.1051/0004-6361/202140892 | |
Published online | 30 September 2021 |
CHEOPS precision phase curve of the Super-Earth 55 Cancri e★
1
Center for Space and Habitability,
Gesellsschaftstrasse 6,
3012
Bern, Switzerland
e-mail: morrisbrettm@gmail.com
2
Astrobiology Research Unit, Université de Liège,
Allée du 6 Août 19C,
4000
Liège, Belgium
3
Space sciences, Technologies and Astrophysics Research (STAR) Institute, Université de Liège,
Allée du 6 Août 19C,
4000
Liège, Belgium
4
Observatoire Astronomique de l’Université de Genève,
Chemin Pegasi 51,
Versoix, Switzerland
5
Department of Astronomy, Stockholm University, AlbaNova University Center,
10691
Stockholm, Sweden
6
Centre for Exoplanet Science, SUPA School of Physics and Astronomy, University of St Andrews,
North Haugh,
St Andrews
KY16 9SS, UK
7
Physikalisches Institut, University of Bern,
Gesellsschaftstrasse 6,
3012
Bern, Switzerland
8
Aix Marseille Univ, CNRS, CNES, LAM,
Marseille, France
9
Instituto de Astrofísica de Canarias,
38200
La Laguna,
Tenerife, Spain
10
Departamento de Astrofísica, Universidad de La Laguna,
38206
La Laguna,
Tenerife, Spain
11
Institut de Ciències de l’Espai (ICE, CSIC),
Campus UAB, Can Magrans s/n,
08193
Bellaterra, Spain
12
Institut d’Estudis Espacials de Catalunya (IEEC),
08034
Barcelona, Spain
13
Depto. de Astrofísica, Centro de Astrobiologia (CSIC-INTA), ESAC campus,
28692
Villanueva de la Cãda (Madrid), Spain
14
Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto,
CAUP, Rua das Estrelas,
4150-762
Porto, Portugal
15
Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre,
4169-007
Porto, Portugal
16
Space Research Institute, Austrian Academy of Sciences,
Schmiedlstrasse 6,
8042
Graz, Austria
17
Université Grenoble Alpes, CNRS, IPAG,
38000
Grenoble, France
18
Admatis,
Miskok, Hungary
19
Institute of Planetary Research, German Aerospace Center (DLR),
Rutherfordstrasse 2,
12489
Berlin, Germany
20
Université de Paris, Institut de physique du globe de Paris, CNRS,
75005
Paris, France
21
Lund Observatory, Dept. of Astronomy and Theoretical Physics, Lund University,
Box 43,
22100
Lund, Sweden
22
Leiden Observatory, University of Leiden,
PO Box 9513,
2300
RA Leiden, The Netherlands
23
Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory,
43992
Onsala, Sweden
24
Dipartimento di Fisica, Università degli Studi di Torino,
via Pietro Giuria 1,
10125,
Torino, Italy
25
Center for Astronomy and Astrophysics, Technical University Berlin,
Hardenberstrasse 36,
10623
Berlin, Germany
26
University of Vienna, Department of Astrophysics,
Türkenschanzstrasse 17,
1180
Vienna, Austria
27
Konkoly Observatory, Research Centre for Astronomy and Earth Sciences,
1121
Budapest,
Konkoly Thege Miklós út 15-17, Hungary
28
IMCCE, UMR8028 CNRS, Observatoire de Paris, PSL Univ., Sorbonne Univ.,
77 av. Denfert-Rochereau,
75014
Paris, France
29
Institut d’astrophysique de Paris, UMR7095 CNRS, Université Pierre & Marie Curie,
98bis blvd. Arago,
75014
Paris, France
30
INAF, Osservatorio Astronomico di Padova,
Vicolo dell’Osservatorio 5,
35122
Padova, Italy
31
Astrophysics Group, Keele University,
Staffordshire,
ST5 5BG, UK
32
Department of Astrophysics, University of Vienna,
Tuerkenschanzstrasse 17,
1180
Vienna, Austria
33
INAF, Osservatorio Astrofisico di Catania,
Via S. Sofia 78,
95123
Catania, Italy
34
Institute of Optical Sensor Systems, German Aerospace Center (DLR),
Rutherfordstrasse 2,
12489
Berlin, Germany
35
Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università degli Studi di Padova,
Vicolo dell’Osservatorio 3,
35122
Padova, Italy
36
Department of Physics, University of Warwick,
Gibbet Hill Road,
Coventry
CV4 7AL, UK
37
Cavendish Laboratory, JJ Thomson Avenue,
Cambridge
CB3 0HE, UK
38
ESTEC, European Space Agency,
2201AZ,
Noordwijk, The Netherlands
39
Institut für Geologische Wissenschaften, Freie Universität Berlin,
12249
Berlin, Germany
40
ELTE Eötvös Loránd University, Gothard Astrophysical Observatory,
9700
Szombathely,
Szent Imre h. u. 112, Hungary
41
MTA-ELTE Exoplanet Research Group,
9700
Szombathely,
Szent Imre h. u. 112, Hungary
42
Institute of Astronomy, University of Cambridge,
Madingley Road,
Cambridge,
CB3 0HA, UK
43
Ingenieurbüro Ulmer – Technische Informatik,
Im Technologiepark 1,
15236
Frankfurt, Germany
44
Airbus
DS Spain
45
Science and Operations Department – Science Division (SCI-SC), Directorate of Science, European Space Agency (ESA), European Space Research and Technology Centre (ESTEC), The Netherlands
46
ELTE Eötvös Loránd University, Institute of Physics,
Pázmány Péter sétány 1/A,
1117
Budapest, Hungary
47
Sydney Institute for Astronomy, School of Physics A29, University of Sydney,
NSW
2006, Australia
48
Division Technique INSU, BP 330,
83507
La Seyne cedex, France
Received:
26
March
2021
Accepted:
11
June
2021
Context. 55 Cnc e is a transiting super-Earth (radius 1.88 R⊕ and mass 8 M⊕) orbiting a G8V host star on a 17-h orbit. Spitzer observations of the planet’s phase curve at 4.5 μm revealed a time-varying occultation depth, and MOST optical observations are consistent with a time-varying phase curve amplitude and phase offset of maximum light. Both broadband and high-resolution spectroscopic analyses are consistent with either a high mean molecular weight atmosphere or no atmosphere for planet e. A long-term photometric monitoring campaign on an independent optical telescope is needed to probe the variability in this system.
Aims. We seek to measure the phase variations of 55 Cnc e with a broadband optical filter with the 30 cm effective aperture space telescope CHEOPS and explore how the precision photometry narrows down the range of possible scenarios.
Methods. We observed 55 Cnc for 1.6 orbital phases in March of 2020. We designed a phase curve detrending toolkit for CHEOPS photometry which allowed us to study the underlying flux variations in the 55 Cnc system.
Results. We detected a phase variation with a full-amplitude of 72 ± 7 ppm, but did not detect a significant secondary eclipse of the planet. The shape of the phase variation resembles that of a piecewise-Lambertian; however, the non-detection of the planetary secondary eclipse, and the large amplitude of the variations exclude reflection from the planetary surface as a possible origin of the observed phase variations. They are also likely incompatible with magnetospheric interactions between the star and planet, but may imply that circumplanetary or circumstellar material modulate the flux of the system.
Conclusions. This year, further precision photometry of 55 Cnc from CHEOPS will measure variations in the phase curve amplitude and shape over time.
Key words: techniques: photometric / methods: observational / planets and satellites: atmospheres / stars: individual: 55 Cnc / planets and satellites: individual: 55 Cnc e / instrumentation: photometers
Photometric data are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/653/A173
© ESO 2021
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.