Issue |
A&A
Volume 643, November 2020
|
|
---|---|---|
Article Number | A63 | |
Number of page(s) | 23 | |
Section | Extragalactic astronomy | |
DOI | https://doi.org/10.1051/0004-6361/202038641 | |
Published online | 03 November 2020 |
DeGaS-MC: Dense Gas Survey in the Magellanic Clouds
I. An APEX survey of HCO+ and HCN(2−1) toward the LMC and SMC
1
AIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité, 91191 Gif-sur-Yvette, France
e-mail: maud.galametz@cea.fr
2
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße 1, 85748 Garching, Germany
3
European Southern Observatory, Karl-Schwarzschild-Strasße 2, 85748 Garching-bei-München, Germany
4
Joint Institute for VLBI ERIC, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands
5
Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstraße 12-14, 69120 Heidelberg, Germany
6
Laboratoire de Physique de l’École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
7
LERMA, Observatoire de Paris, PLS research University, CNRS, Sorbonne Université, 75104 Paris, France
8
Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, 34055 Daejeon, Republic of Korea
9
SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA, Utrecht, The Netherlands
Received:
11
June
2020
Accepted:
21
August
2020
Context. Understanding the star-forming processes is key to understanding the evolution of galaxies. Investigating star formation requires precise knowledge of the properties of the dense molecular gas complexes where stars form and a quantification of how they are affected by the physical conditions to which they are exposed. The proximity, low metallicity, and wide range of star formation activity of the Large and Small Magellanic Clouds (LMC and SMC) make them prime laboratories to study how local physical conditions impact the dense gas reservoirs and their star formation efficiency.
Aims. The aim of the Dense Gas Survey for the Magellanic Clouds (DeGaS-MC) project is to expand our knowledge of the relation between dense gas properties and star formation activity by targeting the LMC and SMC observed in the HCO+(2−1) and HCN(2−1) transitions.
Methods. We carried out a pointing survey targeting two lines toward ∼30 LMC and SMC molecular clouds using the SEPIA180 instrument installed on the Atacama Pathfinder EXperiment (APEX) telescope. We performed a follow-up mapping campaign of the emission in the same transition in 13 star-forming regions. This first paper provides line characteristic catalogs and integrated line-intensity maps of the sources.
Results. HCO+(2−1) is detected in 20 and HCN(2−1) in 8 of the 29 pointings observed. The dense gas velocity pattern follows the line-of-sight velocity field derived from the stellar population. The three SMC sources targeted during the mapping campaign were unfortunately not detected in our mapping campaign but both lines are detected toward the LMC 30Dor, N44, N105, N113, N159W, N159E, and N214 regions. The HCN emission is less extended than the HCO+ emission and is restricted to the densest regions. The HCO+(2−1)/HCN(2−1) brightness temperature ratios range from 1 to 7, which is consistent with the large ratios commonly observed in low-metallicity environments. A larger number of young stellar objects are found at high HCO+ intensities and lower HCO+/HCN flux ratios, and thus toward denser lines of sight. The dense gas luminosities correlate with the star formation rate traced by the total infrared luminosity over the two orders of magnitude covered by our observations, although substantial region-to-region variations are observed.
Key words: stars: formation / molecular processes / ISM: clouds / ISM: molecules / Magellanic Clouds / galaxies: ISM
© M. Galametz et al. 2020
Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.