Issue |
A&A
Volume 623, March 2019
|
|
---|---|---|
Article Number | A30 | |
Number of page(s) | 21 | |
Section | Galactic structure, stellar clusters and populations | |
DOI | https://doi.org/10.1051/0004-6361/201834718 | |
Published online | 27 February 2019 |
Measuring the local matter density using Gaia DR2
The Oskar Klein Centre for Cosmoparticle Physics, Department of Physics, Stockholm University, AlbaNova, 10691 Stockholm, Sweden
e-mail: axel.widmark@fysik.su.se
Received:
26
November
2018
Accepted:
23
January
2019
Aims. We determine the total dynamical matter density in the solar neighbourhood using the second Gaia data release (DR2).
Methods. The dynamical matter density distribution is inferred in a framework of a Bayesian hierarchical model, which accounts for position and velocity of all individual stars, as well as the full error covariance matrix of astrometric observables, in a joint fit of the vertical velocity distribution and stellar number density distribution. This was done for eight separate data samples, with different cuts in observed absolute magnitude, each containing about 25 000 stars. The model for the total matter density does not rely on any underlying baryonic model, although we assumed that it is symmetrical, smooth, and monotonically decreasing with distance from the mid-plane.
Results. We infer a density distribution which is strongly peaked in the region close to the Galactic plane (≲60 pc), for all eight stellar samples. Assuming a baryonic model and a dark matter halo of constant density, this corresponds to a surplus surface density of approximately 5–9 M⊙ pc−2. For the Sun’s position and vertical velocity with respect to the Galactic plane, we infer Z⊙ = 4.76 ± 2.27 pc and W⊙ = 7.24 ± 0.19 km s−1.
Conclusions. These results suggest a surplus of matter close to the Galactic plane, possibly explained by an underestimated density of cold gas. We discuss possible systematic effects that could bias our result, for example unmodelled non-equilibrium effects, and how to account for such effects in future extensions of this work.
Key words: Galaxy: kinematics and dynamics / Galaxy: disk / solar neighborhood / astrometry
© ESO 2019
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.