Issue |
A&A
Volume 598, February 2017
|
|
---|---|---|
Article Number | L8 | |
Number of page(s) | 5 | |
Section | Letters | |
DOI | https://doi.org/10.1051/0004-6361/201630107 | |
Published online | 02 February 2017 |
Magnetic shuffling of coronal downdrafts⋆
1 Dipartimento di Fisica & Chimica, Università di Palermo, Piazza del Parlamento 1, 90134 Palermo Italy
e-mail: apetralia@astropa.unipa.it
2 INAF−Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, 90134 Palermo, Italy
Received: 21 November 2016
Accepted: 19 January 2017
Context. Channelled fragmented downflows are ubiquitous in magnetized atmospheres, and have recently been addressed based on an observation after a solar eruption.
Aims. We study the possible back-effect of the magnetic field on the propagation of confined flows.
Methods. We compared two 3D magnetohydrodynamic simulations of dense supersonic plasma blobs that fall down along a coronal magnetic flux tube. In one, the blobs move strictly along the field lines; in the other, the initial velocity of the blobs is not perfectly aligned with the magnetic field and the field is weaker.
Results. The aligned blobs remain compact while flowing along the tube, with the generated shocks. The misaligned blobs are disrupted and merge through the chaotic shuffling of the field lines. They are structured into thinner filaments. Alfvén wave fronts are generated together with shocks ahead of the dense moving front.
Conclusions. Downflowing plasma fragments can be chaotically and efficiently mixed if their motion is misaligned with field lines, with broad implications for disk accretion in protostars, coronal eruptions, and rain, for example.
Key words: magnetohydrodynamics (MHD) / Sun: corona / Sun: activity / accretion, accretion disks
Movies associated to Figs. 2 and 3 are available at http://www.aanda.org
© ESO, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.