Issue |
A&A
Volume 595, November 2016
|
|
---|---|---|
Article Number | A8 | |
Number of page(s) | 5 | |
Section | The Sun | |
DOI | https://doi.org/10.1051/0004-6361/201628673 | |
Published online | 24 October 2016 |
Solar-cycle variation of the rotational shear near the solar surface
1 Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
e-mail: barekat@mps.mpg.de
2 Institut für Astrophysik, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
Received: 8 April 2016
Accepted: 5 August 2016
Context. Helioseismology has revealed that the angular velocity of the Sun increases with depth in the outermost 35 Mm of the Sun. Recently, we have shown that the logarithmic radial gradient (dlnΩ/dlnr) in the upper 10 Mm is close to −1 from the equator to 60° latitude.
Aims. We aim to measure the temporal variation of the rotational shear over solar cycle 23 and the rising phase of cycle 24 (1996−2015).
Methods. We used f mode frequency splitting data spanning 1996 to 2011 from the Michelson Doppler Imager (MDI) and 2010 to 2015 from the Helioseismic Magnetic Imager (HMI). In a first for such studies, the f mode frequency splitting data were obtained from 360-day time series. We used the same method as in our previous work for measuring dlnΩ/dlnr from the equator to 80° latitude in the outer 13 Mm of the Sun. Then, we calculated the variation of the gradient at annual cadence relative to the average over 1996 to 2015.
Results. We found the rotational shear at low latitudes (0° to 30°) to vary in-phase with the solar activity, varying by ~± 10% over the period 1996 to 2015. At high latitudes (60° to 80°), we found rotational shear to vary in anti-phase with the solar activity. By comparing the radial gradient obtained from the splittings of the 360-day and the corresponding 72-day time series of HMI and MDI data, we suggest that the splittings obtained from the 72-day HMI time series suffer from systematic errors.
Conclusions. We provide a quantitative measurement of the temporal variation of the outer part of the near surface shear layer which may provide useful constraints on dynamo models and differential rotation theory.
Key words: Sun: helioseismology / Sun: interior / Sun: rotation
© ESO, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.