Issue |
A&A
Volume 570, October 2014
|
|
---|---|---|
Article Number | L12 | |
Number of page(s) | 4 | |
Section | Letters | |
DOI | https://doi.org/10.1051/0004-6361/201424839 | |
Published online | 23 October 2014 |
The radial gradient of the near-surface shear layer of the Sun
1
Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077
Göttingen, Germany
e-mail:
barekat@mps.mpg.de
2
Institut für Astrophysik, Georg-August-Universität
Göttingen, 37077
Göttingen,
Germany
Received:
20
August
2014
Accepted:
2
October
2014
Context. Helioseismology has provided unprecedented information about the internal rotation of the Sun. One of the important achievements was the discovery of two radial shear layers: one near the bottom of the convection zone (the tachocline) and one near the surface. These shear layers may be important ingredients for explaining the magnetic cycle of the Sun.
Aims. We measure the logarithmic radial gradient of the rotation rate (dlnΩ/dlnr) near the surface of the Sun using 15 years of f mode rotational frequency splittings from the Michelson Doppler Imager (MDI) and four years of data from the Helioseismic and Magnetic Imager (HMI).
Methods. We model the angular velocity of the Sun in the upper ~10 Mm as changing linearly with depth and use a multiplicative optimally localized averaging inversion to infer the gradient of the rotation rate as a function of latitude.
Results. Both the MDI and HMI data show that dlnΩ/dlnr is close to −1 from the equator to 60° latitude and stays negative up to 75° latitude. However, the value of the gradient is different for MDI and HMI for latitudes above 60°. Additionally, there is a significant difference between the value of dlnΩ/dlnr using an older and recently reprocessed MDI data for latitudes above 30°.
Conclusions. We could reliably infer the value of dlnΩ/dlnr up to 60°, but not above this latitude, which will hopefully constrain theories of the near-surface shear layer and dynamo. Furthermore, the recently reprocessed MDI splitting data are more reliable than the older versions which contained clear systematic errors in the high degree f modes.
Key words: Sun: helioseismology / Sun: interior / Sun: rotation
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.