Issue |
A&A
Volume 567, July 2014
|
|
---|---|---|
Article Number | A144 | |
Number of page(s) | 10 | |
Section | Cosmology (including clusters of galaxies) | |
DOI | https://doi.org/10.1051/0004-6361/201424047 | |
Published online | 05 August 2014 |
Characterising superclusters with the galaxy cluster distribution
1 Max-Planck-Institut für extraterrestrische Physik, 85748 Garching, Germany
e-mail: gchon@mpe.mpg.de
2 Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF, UK
3 Excellence Cluster Universe, Boltzmannstrasse 2, 85748 Garching, Germany
Received: 22 April 2014
Accepted: 17 June 2014
Superclusters are the largest observed matter density structures in the Universe. Recently, we presented the first supercluster catalogue constructed with a well-defined selection function based on the X-ray flux-limited cluster survey, REFLEX II. To construct the sample we proposed a concept to find large objects with a minimum overdensity such that it can be expected that most of their mass will collapse in the future. The main goal is to provide support for our concept here by using simulation that we can, on the basis of our observational sample of X-ray clusters, construct a supercluster sample defined by a certain minimum overdensity. On this sample we also test how superclusters trace the underlying dark matter distribution. Our results confirm that an overdensity in the number of clusters is tightly correlated with an overdensity of the dark matter distribution. This enables us to define superclusters within which most of the mass will collapse in the future. We also obtain first-order mass estimates of superclusters on the basis of the properties of the member clusters. We also show that in this context the ratio of the cluster number density and dark matter mass density is consistent with the theoretically expected cluster bias. Our previous work provided evidence that superclusters are a special environment in which the density structures of the dark matter grow differently from those in the field, as characterised by the X-ray luminosity function. Here we confirm for the first time that this originates from a top-heavy mass function at high statistical significance that is provided by a Kolmogorov-Smirnov test. We also find in close agreement with observations that the superclusters only occupy a small volume of a few per cent, but contain more than half of the clusters in the present-day Universe.
Key words: large-scale structure of Universe / X-rays: galaxies: clusters
© ESO, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.